

Department Of Mathematics Faculty

Federico Ardila Combinatorics

Matthias Beck Analytic Number Theory,

Discrete Geometry

Henry Boateng Scientific Computing,

Computational Chemistry, Applied Mathematics

Emily Clader Algebraic Geometry

Luella Fu Large Scale Statistics

Arek Goetz **Dynamical Systems**

Shandy Hauk Mathematics and Statistics

Education, Dynamical

Systems

Tao He Statistics, Quantitative

Biology

Serkan Hosten Applied Algebraic Geometry

Eric Hsu **Mathematics Education**

Mohammad Kafai Statistics: Nonparametric

Chun-Kit Lai Harmonic Analysis

Applied Computational Shidong Li

Harmonic Analysis

Ananda Majumdar Statistics

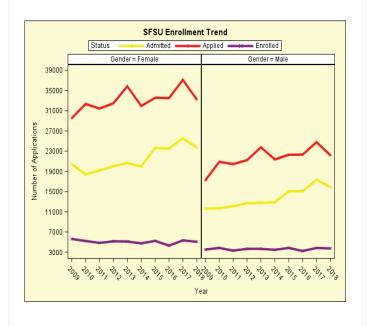
Ornella Mattei Applied Mathematics,

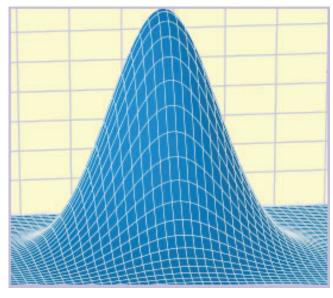
Mathematical Modeling

Alexandra Piryatinska Statistics

Dustin Ross Algebraic Geometry

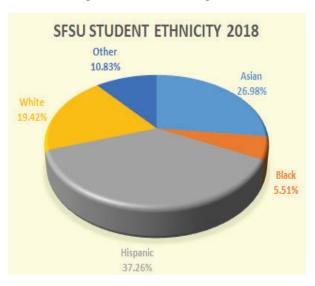
Alexander Schuster Complex Analysis


Mathematics Education Kimberly Seashore


Thornton Hall 937 Department of Mathematics Francisco, Francisco Holloway **State University** Avenue

Masters of Science in Statistical Data Science

Department of Mathematics College of Science and Engineering



The purpose of the program is to deliver a comprehensive curriculum in the field of statistical data science to prepare students with backgrounds in statistics, mathematics, computer science, engineering, and other quantitative fields, for the data science workforce or a doctoral program.

Admission Requirements

- Baccalaureate degree from a regionally accredited institution, or shall have completed equivalent academic preparation as determined by the appropriate campus authority;
- Baccalaureate degree in a quantitative field in but not limited to statistics, mathematics, computer science, physics, engineering or relevant fields. Successful applicants are expected to have completed three semesters of calculus, linear algebra, and upper division undergraduate courses in probability and statistics with a grade of B or better. However, an applicant who is deficient in probability theory and/or statistics may be admitted conditionally on passing MATH 440 Probability and Statistics I and/or MATH 441/741 Probability and Statistics II satisfactorily during the first calendar year of study;
- Good academic standing at the last college or university attended;
- 3.0 GPA in their earned undergraduate degree or in the last 60 semester (90 quarter) units completed, or have earned a post-baccalaureate degree.

Total Units Required to complete the Degree: 30 Units

Required Courses: 18 Units

Math 448	Introduction to Statistical Learning and Data Mining	3
Math 742	Advanced Probability Models	3
Math 748	Theory and Applications of Statistical and Machine Learning	3
Math 760	Multivariate Statistical Methods	3
Math 761	Computational Statistics	3
Math 892 <i>OR</i> Math 895 <i>OR</i> Math 898	Data Science Internship <i>OR</i> Research Project <i>OR</i> Master's Thesis	3

Elective Course: 12 Units

No more than **9 units** could be from **undergraduate only** courses. Per student's specialization interest and upon Graduate Advisor's approval, the student will choose a set of electives from one of the following areas:

 Probability and 	d Statistics Electives:	
Math 440	Probability and Statistics I	3
Math 441/741	Probability and Statistics II Introduction to Linear Models	3
Math 424/724	Introduction to Linear Models	3
Math 442	Probability Models	3
Math 443	Introduction to Time Series Analysis	3
Math 447	Design and Analysis of Experiments	3
Math 449	Design and Analysis of Experiments Categorical Data Analysis	3
Math 899	Independent Study	3
	1	

Mathematics Electives:

Math 400	Numerical Analysis	3
Math 425	Applied and Computational	3
3.5.1.100	Linear Algebra	_
Math 430	Mathematics of Optimization	3
Math 460	Mathematical Modeling	3
Math 471/771	Fourier Analysis and Applications	3
Math 477/777	Partial Differential Equations	3
Math 495	Introduction to Wavelets and	
	Frames with Applications	3
Math 710	Measure and Integration	3
Math 725	Advanced Linear Algebra	3
	8	

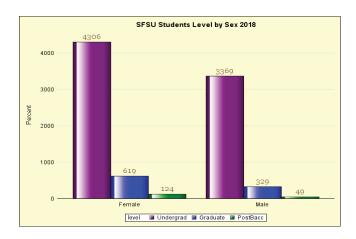
• Computer Science Electives:

CSC 821	Biomedical Imaging and Analysis Artificial Intelligence	3
CSC 865	Artificial Intelligence	3
CSC 869	Data Mining	3
CSC 872	Pattern Analysis and Machine Intel	3
CSC 874	Topics in Big Data Analysis	3

Application Process

- Apply to San Francisco State University using the Cal State Apply website: https://www2.calstate.edu/apply
- Prepare the following documents to upload:
 - Personal Statement of Purpose
 - Minimum of two letters of recommendation
 - Transcript(s)
- International Students refer to the website: https://grad.sfsu.edu/content/international-application -submission
- All graduate study applicants, regardless of citizenship, whose native language is not English must demonstrate English language proficiency. To demonstrate your English language ability, you should submit an official Test of English as a Foreign Language, TOEFL (minimum 550/80) or International English Language Testing System, IELTS (minimum 6.5)
- If applicant meets the preliminary admissions criteria, then the application is forwarded to the Mathematics Department for final review

Contacts and Further Information


MS Graduate Advisors:

Dr. Alexandra Piryatinska (alpiryat@sfsu.edu) Dr. Mohammad Kafai (kafai@sfsu.edu)

Division of Graduate Studies Website: http://grad.sfsu.edu

Office of International Programs Website: http://oip.sfsu.edu

Mathematics Department Website: http://math.sfsu.edu

