1. Rotations

Exercise 1. Recall that a *isometry* is a map $R : \mathbb{C} \to \mathbb{C}$ which preserves distances, that is such that for all $z_1, z_2 \in \mathbb{C}, |z_1 - z_2| = |Rz_1 - Rz_2|$. Show that (a) the composition of two isometries is an isometry, (b) the inverse of an isometry is an isometry.

Exercise 2. Show that $R(z) = \rho z + t$ where $\rho = e^{i\alpha}, 0 \leq \alpha < 2\pi$ is an isometry ($t \in \mathbb{C}$).

Exercise 3. Show that the map $R : \mathbb{C} \to \mathbb{C}, R(z) = \rho \bar{z}, |
ho| = 1$ is an isometry.

Exercise 4. Let T be a piecewise rotation with two triangular atoms, P_0 and P_1. Let $T|_{P_0} = R_0$ and $T|_{P_1} = R_1$. Write down the set H_{11} of all points whose itineraries start with 10 as the intersection of two sets (two triangles). What are the possible shapes and the number of vertices of H_{11}?

Exercise 5. A solution of $z^p = 1$ is called a p-th root of unity. Show that if ζ is a 10-th root of unity, then either ζ or $-\zeta$ is a 5-root of unity. What are other numbers p with the property that if ζ is a $(2p)$-th root of unity, then either ζ or $-\zeta$ is a p-root of unity?

Exercise 6. Recall the definition of the return map: Let $f : X \to X$ and $U \subset X$. Let Δ be a subset of U be such that for all $x \in \Delta$, there is n such that $f^n(x) \in U$. Given an $x \in \Delta$, let $\tau(x)$ be the smallest n such that $f^n(x) \in U$. The first return map of f to U is defined as $f_U = f^{\tau(x)}x$.

- (a) Let $f : \mathbb{R} \to \mathbb{R}, f(x) = 3x$. Determine the return map $f_{[0,1]}$ and its domain. (b) Let $f : [0,1) \to [0,1), f(x) = x + 1/3 \mod 1$. Determine the return map $f_{[0,1/2]}$. Hint: The return map is a piecewise translation.

Exercise 7. Let σ be the substitution

\[
\sigma : \begin{array}{c c c}
0 & \rightarrow & 01 \\
1 & \rightarrow & 1.
\end{array}
\]

What are the fixed points of σ (The map σ acts of the space of binary infinite sequences). Are there periodic orbits under σ of period greater than one?