How good is linear programming?
That is related to how long these paths get.

P polytope
\(d(P) = \text{diameter of } P \)
\(= \text{largest between two vertices of } P \)

let \(\Delta(d,n) = \text{max diameter of a chain polytope with } n \text{ facets} \)

How large is \(\Delta(d,n) \)? Is it polynomial in \(n \) and/or \(d \)?

Hirsch Conjecture (1957)
\[\Delta(d,n) \leq n-d \]

Theorem (Santos, June 2010)
The Hirsch conjecture is false!
There is a 43-polytope \(P \) with 86 facets such that \(d(P) = 44 \).

Still, understanding \(\Delta(d,n) \) is very much open.

Open: \(\Delta(d,n) \leq \text{polynomial in } n,d \)?

Step 1 (Klee-Walkup)
\[
(\Delta(d,n) \leq n-d) \quad \text{for all } n,d
\]
\[
\rightarrow \quad (\Delta(d,2d) \leq d) \quad \text{for all } d
\]

Step 2

If \(P \) is a spindle of dim \(d \), \(n \geq 2d \) facets, diam \(d \geq d \)
there is a spindle of dim \(d+1 \), \(n+1 \) facets, diam \(d+1 \geq d+1 \)

Step 3

There is a spindle of dim 5, 48 facets, diam 6

Thm.

There is a spindle of dim 43, 86 facets, diam 44

Note A trick allows us to see a 5-spindle on a 3-sphere, so "proof is in 3-D."