3. (Compositions of compositions) Let \(\alpha \) denote the smallest number among \(n_1, \ldots, n_k \).

Before we begin our proof let’s quickly note that if at least one \(n_i = 0 \), then \(\min(n_1, \ldots, n_k) = 0 \).

Let

\[
A(x_1, \ldots, x_k) = \sum_{n_1, \ldots, n_k \geq 0} \min(n_1, \ldots, n_k)x_1^{n_1} \cdots x_k^{n_k}
\]

Then we have that

\[
(1 - x_1x_2 \cdots x_k)A(x_1, \ldots, x_k) = A(x_1, \ldots, x_k) - x_1x_2 \cdots x_k A(x_1, \ldots, x_k)
\]

\[
\sum_{n_1, \ldots, n_k \geq 0} \min(n_1, \ldots, n_k)x_1^{n_1} \cdots x_k^{n_k} - \sum_{n_1, \ldots, n_k \geq 0} \min(n_1, \ldots, n_k)x_1^{n_1+1} \cdots x_k^{n_k+1}
\]

\[
\sum_{n_1, \ldots, n_k \geq 1} \left[\min(n_1, \ldots, n_k) - \min(n_1 - 1, \ldots, n_k - 1) \right] x_1^{n_1} \cdots x_k^{n_k}
\]

Now if we have that \(\min(n_1, \ldots, n_k) = a_i \) for some \(i \), then we must have that \(a_i - 1 \leq a_j - 1 \) for all \(j \). Thus \(\min(n_1 - 1, \ldots, n_k - 1) = a_i - 1 \). From this we have that \(\min(n_1, \ldots, n_k) - \min(n_1 - 1, \ldots, n_k - 1) = 1 \).

Therefore we have that

\[
(1 - x_1x_2 \cdots x_k)A(x_1, \ldots, x_k) = \sum_{n_1, \ldots, n_k \geq 1} x_1^{n_1} \cdots x_k^{n_k}
\]

\[
\left(\sum_{n \geq 1} x^n \right) \left(\sum_{n \geq 1} x^n \right) \cdots \left(\sum_{n \geq 1} x^n \right)
\]

\[
\frac{x_1}{1-x_1} \frac{x_2}{1-x_2} \cdots \frac{x_k}{1-x_k}
\]

Hence we have that

\[
A(x_1, \ldots, x_k) = \frac{x_1x_2 \cdots x_k}{(1-x_1)(1-x_2) \cdots (1-x_k)}
\]

4. (Compositions of compositions) Let \(n \) be a fixed positive integer. Find the number of ways of choosing a composition \(\alpha \) of \(n \), and then choosing a composition of \(\alpha \).

We begin by first breaking up \(n = 1 + 1 + \cdots + 1 \). Now for any composition of \(n \) we are free to remove any of the \(n-1 \)’s and combine the 1’s adjacent to each other. If we don’t remove any plus signs than we have a composition with \(n \) entries (all 1’s). Now for every plus sign that we remove we decrease the number of entries by one. Thus if we remove \(j \) plus signs we end up with a composition with \(n-j \) entries. For example let \(n = 7 \) and \(j = 3 \) then we must get \(4 \)-compositions, some being

\[
4 + 1 + 1 + 1 \text{ or } 2 + 3 + 1 + 1 \text{ or } 2 + 2 + 2 + 1
\]