(1) Let F be a field and consider $I = \langle x^2 - y, x^3 - z \rangle \in F[x, y, z]$.

(a) Define what a Gröbner basis for I is.

(b) Compute a Gröbner basis for I using graded lexicographic order with $x \geq y \geq z$.

(c) Is your Gröbner basis reduced?

Solution: (b) We use Buchberger’s algorithm and compute

$$S(x^2 - y, x^3 - z) = x(x^2 - y) - (x^3 - z) = -xy + z.$$

Thus $x^3 - z \in (x^2 - y, -xy + z)$, and so $I = \langle x^2 - y, -xy + z \rangle$. Now $S(x^2 - y, -xy + z) = xz - y^2$. We compute

$$S(x^2 - y, xz - y^2) = -yz + xy^2 = -y(-xy + z)$$

and

$$S(-xy + z, xz - y^2) = -y^3 + z^2.$$

Let

$$G = \{ x^2 - y, -xy + z, xz - y^2, -y^3 + z^2 \}.$$

So far we computed $S(x^2 - y, -xy + z)$, $S(x^2 - y, xz - y^2)$, and $S(-xy + z, xz - y^2)$, and they all give remainder 0 under the extended Euclidean algorithm. We further compute

$$S(x^2 - y, -y^3 + z^2) = y^3(x^2 - y) + x^2(-y^3 + z^2) = x^2z^2 - y^4$$

$$= z^2(x^2 - y) + y(-y^3 + z^2).$$

which also gives remainder 0,

$$S(-xy + z, -y^3 + z^2) = y^2(-xy + z) - x(-y^3 + z^2) = -xz^2 + y^2z$$

$$= -z(xz - y^2)$$

again with remainder 0, and

$$S(xz - y^2, -y^3 + z^2) = y^3(xz - y^2) + xz(-y^3 + z^2) = -y^5 + xz^3$$

$$= y^2(-y^3 + z^2) + z^2(xz - y^2)$$

once more with remainder 0. Hence G is a (in fact, reduced) Gröbner basis for I.
Let $a \in \mathbb{Q} \setminus \{0\}$ and let $\omega = e^{2\pi i/8}$.

(a) Define the Galois group of a field extension K/F.
(b) Determine for which a the field $\mathbb{Q}(\omega\sqrt{a})$ is of degree 4 over \mathbb{Q}.
(c) In the case that $[\mathbb{Q}(\omega\sqrt{a}) : \mathbb{Q}] = 4$, prove that $\text{Aut}_\mathbb{Q}(\mathbb{Q}(\omega\sqrt{a})) \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$.

Solution: (b) The minimal polynomial of $\omega\sqrt{a}$ is $x^4 + a^2$. It has no roots in \mathbb{Q} but comes with the quadratic factorization

$$x^4 + a^2 = \left(x^2 + \sqrt{2a} x + a\right) \left(x^2 - \sqrt{2a} x + a\right).$$

Thus $x^4 + a^2$ is irreducible over \mathbb{Q} if and only if $\sqrt{2a} \neq \frac{p}{q}$ for some integers p and q, and so these are precisely the cases when $[\mathbb{Q}(\omega\sqrt{a}) : \mathbb{Q}] = 4$.

(c) We now assume $x^4 + a^2$ is irreducible over \mathbb{Q}. Thus $\mathbb{Q}(\omega\sqrt{a})/\mathbb{Q}$ is Galois, and we have the three intermediate fields

$$\mathbb{Q}(i), \mathbb{Q}\left(\sqrt{2a}\right), \text{ and } \mathbb{Q}\left(i\sqrt{2a}\right).$$

By the fundamental theorem of Galois theory, $\text{Aut}_\mathbb{Q}(\mathbb{Q}(\omega\sqrt{a}))$ has three distinct subgroups of order 2; since $\text{Aut}_\mathbb{Q}(\mathbb{Q}(\omega\sqrt{a}))$ has order 4, it is therefore isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

(3) Let q be a prime power and $n \in \mathbb{Z}_{>0}$.

(a) Prove that if a polynomial $p(x_1, x_2, \ldots, x_n)$ over \mathbb{F}_q of degree $< q$ vanishes at every point in \mathbb{F}_q^n, then $p(x_1, x_2, \ldots, x_n)$ has to be the zero polynomial.
(b) Give an example that shows that our assumption about the degree of $p(x_1, x_2, \ldots, x_n)$ is necessary.

Solution: (a) We use induction on n; the base case follows from linear algebra. For the induction step, assume that $p(x_1, x_2, \ldots, x_n)$ vanishes at every point in \mathbb{F}_q^n and write

$$p(x_1, x_2, \ldots, x_n) = \sum_{j=0}^{q-1} p_j(x_1, x_2, \ldots, x_{n-1}) x_n^j$$

for some polynomials $p_0, p_1, \ldots, p_{q-1}$ in the first $n-1$ variables; note that they are all of degree $< q$. Viewing the above expression as a polynomial in the single variable x_n, we know again from linear algebra that it has to be the zero polynomial (since it vanishes for all $x_n \in \mathbb{F}_q$), that is, each $p_0, p_1, \ldots, p_{q-1}$ vanishes at \mathbb{F}_q^{n-1}. By the induction hypothesis, each $p_0, p_1, \ldots, p_{n-1}$ is the zero polynomial, and thus so is $p(x_1, x_2, \ldots, x_n)$.

(b) For a prime p, the (nonzero) polynomial $x^p - x \in \mathbb{F}_p[x]$ vanishes at \mathbb{F}_p.