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Abstract

We use the tangle model to study the action of the site-specific recombinase Gin,
an enzyme that can introduce topological changes on circular DNA molecules. Gin
and its bound DNA are modelled as a 2-string tangle which undergoes changes
during recombination, thereby changing the topology of the DNA substrate. We
show that the tangles involved in the analysis are all rational tangles. This technique
allows us to prove that, under the model’s assumptions, there is a unique topological
description of the enzymatic action. The Gin system is one of the few to date where
tangle analysis can be carried out systematically and rigorously, yielding a single,
biologically reasonable solution.

1. Preview and motivation

Site-specific recombination alters the genome of an organism by moving, inserting
or inverting DNA segments. When acting on circular DNA molecules, site-specific
recombinases can change the topology and geometry of the molecules [25, 31]. The
tangle model provides mathematical tools to analyze such changes [26, 27, 28].
The detailed tangle formalism and an application of the model to the Tn3 resolvase
system were first presented in [10].
Here we analyze the enzymatic action of Gin, a site-specific recombinase encoded

by bacteriophage Mu (a virus that infects bacteria). Gin inverts a DNA segment
within the phage genome to extend the phage’s range of infection. The phage genome
contains two recombination sites that Gin recognizes, cleaves and rearranges to
complete one round of recombination (Figure 1). Gin recombination is processive,
i.e. it can carry out more than one recombination round while binding only once to
its substrate. We study the case where, prior to recombination, the phage genome
is a single circular DNA molecule, effectively the unknot in S3. Recombination can
then be analyzed by using tangles to model an enzyme such as Gin together with
the DNA bound to the enzyme (see: [29]). Tangles, defined formally below, are
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Fig. 1. Local action of site-specific recombination
The figure shows the two gix recombination sites undergoing recombination. The recombination
sites are short (34 bp long) segments of DNA; in this representation the primary Crick-Watson
twists are omitted. The base pair sequence of the gix sites is illustrated in the upper left corner. The
sequence is not palindromic and therefore an orientation can be assigned to it; the figure shows one
of the two possible orientations for each site. The “cut” through the nucleotide sequence indicates
the cleavage region of the sites.

mathematical representations of the local interrelations between the enzyme and
the DNA. Changes in the tangles represent local rearrangements, which can alter the
topological structure of the circular DNA molecule, detected by changes of knot and
link types. Tangle analysis seeks to characterize the local enzymatic action, given the
observed knot types of DNA substrate and products after one or more recombination
rounds.
In tangle analyses key simplifications usually occur if the tangles involved are

known to be of a special form, i.e. to be rational tangles [10]. Previous applications
of the tangle model to site-specific recombination have often been limited by the
fact that tangle rationality had to be assumed in certain arguments (e.g. [6]). As in
[10], we are able to prove rationality at the key points, by using double branched
cyclic covering spaces of tangles and by using known results [15] on Dehn surgeries
on knots. We find that solving tangle equations based on reasonable mathematical
and biological assumptions systematically gives the same Gin recombinational mech-
anism as that suggested by direct biological reasoning, and, in addition, shows the
uniqueness of the mechanism.
In this paper we will proceed as follows: first introduce the basic mathematical

definitions of the tangle model (Section 1); then describe the biology of the Gin site-
specific recombination system (Section 2); then specify the way the tangle model
is applied to the analysis of site-specific recombination, in particular to the Gin
system (Section 3); then give the mathematical results obtained in the Gin system
analysis (Section 4); and finally outline some further challenges (Section 5), and
conclusions (Section 6).

1. Basic definitions for the tangle model and some previous mathematical results

In this section we state some definitions needed to do tangle analysis and some
previous results relevant to the present application of the model. Objects here defined
live in the locally-flat PL or smooth category. A 2-string tangle is a pair (B, t) where
B is a fixed oriented topological 3-ball in euclidean 3-space, and t is a pair of non-
oriented mutually disjoint spanning arcs properly embedded in B [3, 22]. Two 2-
string tangles B1 = (B, t1) and B2 = (B, t2) defined in the same ball B, with identical
endpoints for the spanning arcs are equivalent if there is an ambient isotopy fixed
on the boundary of B mapping t1 onto t2. In that case we simply write B1 = B2.
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Fig. 2. Definition
The figure illustrates the definitions of 2-string tangle, rational tangle and tangle diagram. B is
a topological 3-ball in S3, D is the unit ball in S3 and t two arcs properly embedded in D. The
endpoints of the arcs t are fixed on the boundary of the ball at the four preferred equatorial points
{NE, NW, SE, SW}. Φ is an orientation preserving homeomorphism of pairs mappingB together
with its two arcs onto (D, t). h is an orientation preserving homeomorphism of pairs that is the
identity on ∂D, and maps (D, t) onto (D, t0), where (D, t0)is the tangle on the upper right, also
called the infinity tangle. pz is the orthogonal projection onto the XY axis, that maps (D, t) and
(D, t0) onto their corresponding tangle diagrams.

There are three different types of tangles: rational, locally knotted and prime. A
tangle (B, t) is rational if there is a homeomorphism of pairs, h: (B, t)→ (D, t0), where
D is the unit ball in Euclidean 3-space, centered at the origin, oriented with the right-
hand coordinate sytem as shown in Figure 2, and t is a pair of straight arcs in the
equatorial (XY) plane, parallel to the Y axis, that intersect the x-axis at−√

(2)/2 and√
(2)/2. All tangle homeomorphisms are here required to be orientation preserving

on the 3-ball B. Call (D, t0) the “infinity” tangle, and {NE, NW, SE, SW} the points
where the arcs intersect the boundary ofD (Figure 2). Note that in a rational tangle,
if the end-points of one of the arcs of t is NE, then the other end-point of that same
arc can be any of the three remaining equatorial points, and is not forced to be SE
as suggested by the infinity tangle.
A tangle (B, t) is locally knotted if there is a 2-sphere S in B that intersects either

of the two arcs in t transversely in two points, and such that the 3-ball bounded by
S in B intersects t in a knotted arc with end-points on S. A tangle is prime if it is
neither rational nor locally knotted. A tangle that is not locally knotted is referred
to as locally unknotted; locally unknotted tangles are either prime or rational. Note
that by definition any tangle is of one, and only one, of the three defined types.
We assign to each tangle (B, t) an orientation preserving homeomorphism of pairs,

Φ: (B, t) → (D, tΦ) that maps B onto the unit 3-ball D, and the endpoints of t onto
NE, NW, SE and SW (Figure 2). In order to compare tangles in different 3-balls,
from now on we consider all tangles as defined on the unit ball D (via Φ), with arcs
anchored in the four equatorial points. This allows us to analyze tangles through
their tangle diagrams (obtained by projecting the arcs onto the equatorial disk).
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Fig. 3. Tangle diagrams
(A)The three different kinds of tangles: panels (a) and (a’) show rational tangles; (b) locally knotted
tangles; (c) prime tangles. The tangle in (a’) is called an integral tangle. (B) Shown are the four
trivial tangles. These tangles are rational, they are treated separately because their associated
Conway symbols do not satisfy the convention. Note that the Conway symbol associated to the
infinity tangle is (0, 0).

Given the tangle (D, t1), another tangle (D, t2) equivalent to (D, t1) can always be
found such that the projection pz of the arcs onto the equatorial disk is regular. A
tangle diagram is the image of (D, t2) under the projection pz. Two tangle diagrams
represent equivalent tangles if they differ by a finite sequence of Reidemeister moves
in the interior of the equatorial disk (see [1]). Figure 3 shows tangle diagrams for
the three different types of tangles: rational (Figures 3Aa, 3Aa’, 3B); locally knotted
(Figure 3Ab); prime (Figure 3Ac).
The classification of rational tangles is crucial for the tangle analysis of site-

specific recombination. To each equivalence class of rational tangles corresponds a
classifying vector, called the Conway Symbol. The Conway symbol, an integer entry
vector (a1, a2, . . . , am), satisfies the following conditions: |a1| > 1; all entries are non-
zero, except possibly for am; and all entries have the same sign. Four exceptional
tangles are excluded from this convention, they can be visualized in Figure 3, panel
B, together with their standard vectors. The classification of rational tangles states
that there exists a one-to-one correspondence between equivalence classes of rational
tangles and the extended rational numbers q/p∈Q � {∞} with p∈N � {0}, q ∈Z
and (p, q) = 1 [3, 4, 14]. Figure 3 panels A(a) and A(a’) show rational tangles and their
classifying vectors. The unique extended rational number q/p∈Q � {∞} associated
to the Conway symbol (a1, a2, . . . , am) is obtained by a continued fraction calculation
as follows:

q

p
= am +

1

am−1 +
1

am−2 +
1

· · · +
1

a1

Several useful operations can be defined between tangles. Tangle addition is defined
in Figure 4, panel A. Note that the sum of two rational tangles is not necessarily
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Fig. 4. Operations on tangles
(A)Tangle Addition: in this example the two intervening tangles are rational but their sum is prime.
(B) The Numerator and Denominator operations produce knots and links. (C) The numerator of
the sum of two rational tangles is a 4-plat. Every 4-plat can be drawn as a closed braid in 4
strands, with one untangled strand, as illustrated here. To this diagram can be associated two
vectors with integer entries of the form ≺ c1, c2, ..., c2n+1 � and ≺ c2n+1, c2, ..., c1 �. If the crossing
sign convention is as in the figure, the entries in the vector are positive, and they classify it. To
each vector can be associated a rational number β

α
, as explained in the text; the resulting b(α, β)

are the Conway Symbols for the 4-plat.

a rational tangle. Figure 4, panel B, is used to define N the numerator and D the
denominator operations, that produce knots or 2-component links from tangles.
If A is a rational tangle then N (A) is a 4-plat. It is known that 4-plats, 2-bridge

and rational are different names for the same family of knots and links [3]. The
numerator operation relates the family of rational tangles with that of 4-plats. If
A or B are any rational tangles (including the trivial tangles), then N (A+B) is a
4-plat as illustrated in Figure 4. 4-plats are defined informally in the figure as closed
braids in 4 strands. Each 4-plat K is characterized by a vector of positive integers
≺ c1, c2, . . . , c2n+1 � (Figure 4C), and by a rational number

β

α
=

1

c1 +
1

c2 +
1

...

In this case, the knot as linkK is denoted by b(α, β). By convention, if α=1=β then
K is the unknot; if α=0 and β =1 thenK is the unlink of two unknotted components;
in all other cases 0<β <α. The Classification theorem of 4-plats (reviewed in [3])
states that b(α, β) and b(α′, β′) are equivalent as non-oriented links if, and only if,
α=α′ and β±1≡β′(modα).
The classifications of rational tangles and of 4-plats permit one to find solutions to

equations of the form N (A+B) =K where A and B are rational tangles. Ernst and
Sumners [10] proved the following lemma that translates the topological formulation
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of N (X +A) =K into a numerical problem. This result is key to solving systems
of rational tangle equations such as those arising from site-specific recombination
reactions, as will be shown in Sections 3 and 4.

Lemma 1·1 ([10]). Given two rational tangles X = (u/v) and A = (x/y) then N (X +
A) = b(α, β) is a 4-plat, where α = |xv + yu|, and β is determined as follows:
(a) if α = 0 then β = 1;
(b) if α = 1 then β = 1;
(c) if α > 1, then β is uniquely determined by 0<β<α and β ≡ σ(vy′+ux′)(modα),

where σ = sign(vx + yu) and y′ and x′ are integers such that xx′ − yy′ = 1.

In general, from site-specific recombination events arise one or more systems of
tangle equations of the form: 


N (O + P ) = K0

N (O +R) = K1

N (O + 2R) = K2

...

where K0 is the substrate, K1 is the product of one round of recombination, K2

is the product of two rounds and so on (see [8, 29]). Substrate and products of
recombination are known 4-plats (K0, K1, K2, . . .), but the intervening tangles O, P
and R are unknown. In order to solve the system of equations one needs to show
that O + P , O + R, O + 2R etc., are rational tangles, or sums of rational tangles.
Determining when the intervening tangles are rational, or sums of rational tangles
is not easy. Ernst and Sumners have extensively studied this problem [10–13]. The
next few concepts and results will be used in Section 4 to prove that the tangles O
and R arising in the system corresponding to Gin recombination are rational.
A 3-manifold M is irreducible if any 2-sphere embedded in M bounds a 3-ball in

M. M has incompressible boundary if any curve that is essential in the boundary of
M is also essential in M (i.e. no essential curve in the boundary bounds a disk in
M). For example the solid torus T = D2 × S1 is irreducible and has compressible
boundary. The following result gives a characterization of 2-string tangles in terms
of their double branched cyclic covering spaces. This result will be used to detect
tangle rationality.

Theorem 1·2 ([22]). Let X = (D, t) be a tangle and X ′ its double branched cyclic
covering, then:
(i) X is rational⇔ X ′ is a solid torus;
(ii) X is prime⇔ X ′ is irreducible and has incompressible boundary;
(iii) X is locally knotted⇔ X ′ is not irreducible.

Given tangles A and B, and a 4-plat K such that N (A+B) =K, a few things can
be said about the nature of A and B. Since all 4-plats different from the unknot or
the unlink of two unknotted components are prime, if A and B are tangles such that
N (A+B) = K a 4-plat, then at most one of A or B is locally unknotted. This follows
from the observation that if each ofA andB contain a local knot, thenN (A+B) = K
cannot be prime (or unknotted, or the unlink of two unknotted components).

Theorem 1·3 ([2, 10, 22]). Let A and B be locally unknotted tangles and K be a
4-plat such that N (A+B) =K, then A or B is rational.



Tangle analysis of Gin site-specific recombination 571
Stronger statements like the following can be made for systems of equations.

Theorem 1·4 ([10]). Suppose that X is a tangle, and that there exist tangles Ai for
1 � i � 3, with A2 and A3 locally unknotted, such that the following three equations hold:
(i) N (X +A1) = b(1, 1);
(ii) N (X +A2) = b(α, β) with α > 1;
(iii) N (X +A3) = b(α′, β′) with α′ > 1.
If |α−α′| > 1, then the 2-fold branched cyclic covering of X, denoted by X ′, is a torus

knot complement. If in addition α = 2, 3 or 4, then X ′ is a solid torus.

The proof of this result makes use of the Cyclic Surgery Theorem [7] and of known
results of Dehn surgery on torus knots [23].
Finally we state a result that will be used in the proof of Theorem 4·2.

Theorem 1·5 ([13, 22]). If R is a prime tangle, and O is a locally unknotted tangle
such that O � (0, 0), then O +R is a prime tangle.

These results will be used in Section 4 to prove the theorems for Gin action. In the
next section we introduce the Gin recombination system.

2. Gin, the site-specific recombination system of bacteriophage Mu

Bacteriophages are viruses that infect bacteria (see [17] for more information
about viruses). There are two possible pathways of viral infection: the lytic pathway
and the lysogenic pathway. During a lytic pathway, the viral DNA replicates in
the bacterial cytoplasm, its genes are expressed and the virus is reproduced. The
new daughter viruses lyse their host (i.e. kill the cell). In the lysogenic pathway
the phage DNA becomes integrated into the host genome. Upon replication of the
bacterial chromosome the phage DNA is also replicated and passed to daughter cells
after division; no new viruses are created, and no cells are lysed. In some cases,
the viral DNA excises from the host chromosome and initiates replication, phage
reproduction and lysis of the bacterium. Viruses that can follow either pathway are
called temperate.
Bacteriophage Mu is a temperate bacteriophage with a wide range of infection,

e.g. Escherichia coli K-12 strains, Escherichia coli C strains, Citrobacter freundii, Shi-
gella sonnei, Serratia marcescens, Enterobacter cloacae and several Erwinia species. The
phage genome consists of 37-42 kilobases (kb) of double-stranded DNA (i.e. Crick–
Watson DNA double-helix, abbreviated by dsDNA) containing the 3.0 kb invertible
G-segment. G-segment inversion extends the range of bacterial hosts that bacterio-
phage Mu can infect, and is mediated by the phage encoded site-specific recombinase
Gin. Locally, Gin binds the DNA substrate at each of two 34 base pairs (bp) long
recombination sites, called gix L and gix R. Gin mediates a double-strand break at
each site, rotates the broken ends, and reconnects (recombines) the DNA (Figure 1).
dsDNA is composed of two sugar-phosphate backbones, each sugar is bound to one of
4 bases (nucleotides A, G, C, T), which carry the genetic information. The nucleotide
sequence defined by each of the the gix sites can be represented as a specific string
in 34 letters. Since the string is not palindromic, one can assign a local orientation
to each site (Figure 1). In the cell, the G-segment lies almost completely in one of
the domains between the gix sites (Figure 5). Since the substrate DNA molecule is
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Fig. 5. G-segment
(A) The figure shows the region from the host genome that contains the G-segment prior to
recombination. The G-segment is in the G(+) orientation. Sc , Sv , and U are genes that encode for
the tail-fiber proteins that allow the phage to infect certain strains of bacteria. The hatched region
corresponds to the recombinational enhancer sequence. (B) After inversion the G-segment is in the
G(−) orientation, thus inducing transcription of S′ = Sc + S′

v and U ′ genes. Expression of S′ and
U ′ genes allows infection of different strains of bacteria.

circular, the orientation of each site induces an orientation on the circle. If the ori-
entations induced by the two sites are the same, then the sites are directly repeated,
otherwise inversely repeated. In the cell, when acting on unknotted substrates, Gin
recombination is efficient only on inversely repeated sites, where a single round of
recombination reverses (inverts) the orientation of the G-segment, switching from
G(+) to G(−) (Figure 5). Nonetheless, when subjected to certain experimental con-
ditions, somewhat efficient recombination has also been achieved on substrates with
directly repeated sites [19], although no G-segment inversion occurs in this case.
Gin recombination requires three accessory factors: negatively supercoiled DNA;

the host-encoded protein Fis (factor for inversion stimulation); and an enhancer se-
quence. The recombinational enhancer sequence (hatched region in Figure 5) is 60 bp
long and is located approximately 110 bp to the right of gixR. The enhancer contains
two binding sites for Fis. Both Gin and Fis must bind to the DNA molecule, and the
enhancer must be present for full recombinational activity. Prior to recombination,
Gin binds the gix sites, and Fis binds the enhancer, thus forming the synaptic complex.
At the sequence level, G-segment inversion results in genomic changes as illus-

trated in Figure 5. When observed in a molecule-wide context, Gin recombination on
circular DNA substrates can result in topological changes. Such changes have been
characterized experimentally [18, 19]. In those experiments, all substrates were ge-
netically identical, circular, unknotted DNA molecules with two gix sites. Two sets
of experiments were done, one with directly repeated recombination sites, the other
with inversely repeated sites. Substrates were reacted with purified enzyme harves-
ted from living cells. Reaction products were fractionated by gel electrophoresis.
Roughly speaking, DNA knots and links with same, small, crossing number migrate
in the gel with same velocity [24], resulting in an array of discrete bands in the gel.
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Fig. 6. Gin products
Products of Gin recombination on unknotted substrates with inversely repeated (upper row) or
directly repeated (bottom row) gix sites. G(+) and G(−) denote orientation of the G-segment.

Gin recombination is processive, i.e. multiple recombination events can occur at a
single binding encounter between enzyme and DNA substrate. Several topologically
different products were observed as expected for a processive recombination event. It
was shown in [19] that in the case of inversely repeated gix sites, products of recom-
bination migrated as knots with 0, 3, 4 and 5 crossings; and products had 3, 5, and
7 crossings for directly repeated sites. Frequency distributions of the product knot
and link types were established, and G-segment orientations of the products (G(+) or
G(−)) were determined. Some gel bands were isolated, samples were taken from each
band, and the molecules in the samples were purified. The resulting DNA molecules
were treated with RecA protein and observed under the electron microscope. Elec-
tron micrographs (EM) were used to determine the knot type of each product. From
these analyses it was concluded that, when acting on inversely repeated sites, Gin
produces, in the following order, the unknot in G(–) orientation, the (–)trefoil in G(+),
the figure-8 knot in G(–) and the (–)5-twist knot in G(+). Products of recombination
for directly repeated sites were, in order, the (–)trefoil, the (–)5-twist knot and the
(–)7-twist knot, all in the G(+) orientation (Figure 6). In [19] a model was proposed
to account for the experimental data. We here present a mathematically rigorous
analysis of Gin recombination. Using the tangle model under biologically reasonable
assumptions, we show that the model proposed in [19] is the unique topological
mechanism for the enzymatic action.

3. Applying the tangle model to site-specific recombination

In Ernst and Sumners [10] the authors successfully introduced and used tangle
analysis (reviewed in [8, 30]) to elucidate the topological mechanism of the Tn3
resolvase.
The motivation for the tangle model [29] can be seen from electron micrographs

of the Tn3 resolvase synaptic complex that show unkotted DNA molecules bound
to site-specific recombinases as dark spots (enzymes) with two emanating arcs
(DNA). This led to a model where the enzyme-DNA complex is a 2-string tangle E
(“enzyme”). The complement S3 − E, together with the two DNA arcs not bound
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to the enzymatic complex, is another tangle Of (“outside free” tangle). The
synaptic complex, before recombination, is represented by the tangle equation
N (Of +E) = b(1, 1). For simplicity the recombination sites are confined in the in-
terior of a ball P ⊂ E, and therefore recombination (“cut-and paste”) is restricted
to P .
Certain assumptions, both biological and mathematical, have to be made before

doing tangle analysis. The first assumption is that the enzyme/DNA complex can
be represented as a sum of tangles E = Ob + P , where Ob (“outside bound”) con-
tains the DNA bound to the enzymatic complex, but that remains unchanged after
recombination. The second assumption is that site-specific recombination acts by
tangle surgery, where the tangle P is converted into a tangle R after one round of
site-specific recombination. One round of recombination can then be modelled by a
system of two tangle equations:

N (Of +Ob + P ) = K0 = substrate

N (Of +Ob +R) = K1 = product.

The third assumption is that the mechanism of recombination is constant, independ-
ent of substrate geometry and topology. What this means is that if all substrates are
topologically identical (all have the same knot or link type, K0), then Of , Ob, P and
R do not change from one event to another. It also implies that if the same enzyme
were to act on topologically different substrates, then all substrate differences would
be acounted for in Of , and the other tangles would remain unchanged from one
experiment to the other (except perhaps for the site orientation that could affect R)
thus reflecting enzyme binding (Ob). Finally, it is assumed that processive recombin-
ation acts by tangle addition, i.e. after n rounds of recombination, P is converted
into nR = R +R + · · · +R. For simplicity we call O = Of +Ob the “outside tangle”,
n rounds of recombination are then modelled as a system of n equations, where O,
P and R are unknown

N (O + P ) = K0 = substrate

N (O +R) = K1 = first product

...

N (O + nR) = K1 = nth product.

It has been observed, through electron micrographs, that when the substrates are
unknotted, the strands emanating from the enzymatic complex are untangled, thus
implying that Of is a trivial tangle (i.e. one of (0), (1), (–1), (0.0)). Therefore, any
topological feature of the tangle O mainly reflects what is happening upon DNA
binding by the site-specific recombinase and its accessory proteins.
The work of Ernst and Sumners allows to find solutions for O and R that are

rational or sums of rational tangles, when substrate and products of recombination
are known 4-plats [10–13]. If only two equations are provided, it is sometimes
impossible to find a unique solution pair (O, R) for the equations. If two or more
products are observed, and are known to result from processive recombination, then
a small set of solutions for tangles O and R can usually be obtained with only a few
rounds of recombination. If a unique solution pair is achieved then results of further
rounds can be predicted.
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Showing that O and R are rational tangles is difficult when only two equations

are available. If two or more products of recombination are known, there are results
that make the task easier, as illustrated by Theorem 1·4 [10] that will be used in the
analysis of Gin recombination. These results make use of the theory of Seifert fibered
spaces, and of the Cyclic Surgery Theorem [7].
For the particular case of Gin recombination, the assumption of constant mechan-

ism has been verified experimentally under standard conditions [19]. Hin is another
site-specific recombinase whose action is believed to be identical to that of Gin.
Electron-micrographs of the Hin recombinase enzymatic complex show the synaptic
complex as a dark spot with three emanating, untangled, DNA loops [16]. Extending
this to Gin and Fis, one can infer that the enzymes together with the bound DNA
can be regarded as a 3-string tangle. However, 3-string tangles are complex objects
and are difficult to classify. Recent work due to Emert and Ernst [9] and to Cabrera
(personal communication) give some characterization of rational 3-string tangles. It
remains difficult to manipulate these objects, and no tools are yet available to detect
rationality of 3-string tangles. This represents an apparent limitation to the tangle
analysis of Gin recombination. Nonetheless, there exists biological evidence that the
accessory protein Fis does not play an active role in recombination, and that its
participation in the synaptic complex is transitory. We assume that one of the three
loops emerging from the 3-string tangle enzymatic complex remains completely fixed
by Fis throughout the recombination event. If we then deform the ball that repres-
ents the enzymatic complex to include that loop in its interior, the resulting figure is
one in which only two loops emanate from the ball, i.e. a 2-string tangle (or sum of
2-string tangles). Furthermore, from the electron-micrographs, Of can be chosen to
be (0). In this case O=Of +Ob =Ob, and solving the equations for O and R will give
all necessary information to reconstruct the initial conformation of the DNA inside
the ball (tangle O), and the process of strand-exchange (tangle R).

4. Results: tangle analysis of Gin recombination

We first consider the case of Gin recombination on unknotted substrates with
inversely repeated gix sites, and G-segment in the G(+) orientation (K0). Products of
recombination have been shown experimentally to be, in order, K1 the unknot with
G(–),K2 the (–) trefoil (31) with G(+),K3 the figure-8 knot (41) with G(–), andK4 the
(–)5-twist knot (52) with G(+) ([10], illustrated here in Figure 6). From these data
results a system of five tangle equations: one substrate N (O + P ) = K0 (equation
(i)); and four products N (O + iR) =Ki (equations (ii), (iii), (iv), (v)). We will here
show (Theorem 4·2) that four equations are sufficient to ensure a unique solution to
the system, and accurately predict the product in the fifth equation. Before stating
the theorem we give a very simple claim that, given the data, restricts the choices
for the intervening tangles O, P and R. The claim uses the concept of parity.
The parity of a tangle [29] describes which pairs of points in {NE, NW, SE, SW}

are connected by each tangle arc. A tangle (A, t) has parity (0) (denoted by A≈ (0)),
if the arcs of t connect NW to NE, and SW to SE; A has parity (1) if the arcs connect
NW to SE and SW to NE; and, A has parity (0, 0) if the arcs connect NW to SW and
NE to SE.
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Fig. 7. Parity table
(Note: in this table the tangle (0,0) is denoted by (∞).)

Claim 4·1 (Inversely Repeated Sites). The tangles involved in equations (i), (ii) and
(iii) of Theorem 4·2 arising from Gin recombination on inversely repeated sites satisfy
the following properties:

0 ≈ (0, 0), R ≈ (1) and P ≈ (0).

Proof. R cannot have parity (0, 0) since N (0 + 2R) would have at least two com-
ponents, but N (0 + 2R) is a knot (only one component). All observed products of
recombination are knots. Figure 7 applied to equations (i), (ii) and (iii), shows that
the only “parity” possibilities for O and R are the following:

0≈ (0, 0) and R≈ (0);
0≈ (1) and R≈ (0);
0≈ (0, 0) and R≈ (1).

In the tangle model, O remains unchanged throughout the recombination event.
It can readily be seen that if R and R+R had the same parity, then N(O+R) and
N(O+R+R) would have the same G-segment orientation, thus contradicting the
experimental data. Therefore R cannot have parity (0), and the only possibility is:

0 ≈ (0, 0) and R≈ (1).
By a similar argument, P and R have different parities, so P ≈ (0, 0) or P ≈ (0).

But if P ≈ (0, 0) and O≈ (0, 0) then N (O+P ) is a link, contradicting the substrate
equation; therefore P ≈ (0).

Theorem 4·2 (Inversely Repeated Sites). Suppose that the tangles O, P , and R sat-
isfy the following equations:
(i) N (O + P ) = ≺ 1 �
(ii) N (O +R) = ≺ 1 �
(iii) N (O +R +R) = ≺ 3 �

then (O, R) ∈ {((−2, 0), (1)); ((4, 1), (−1))}.
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If furthermore

(iv) N (0 +R +R +R) = ≺ 2, 1, 1 � = figure-8 knot
then (O, R) = ((−2, 0), (1)) is the unique solution pair.

Proof. First O and R are shown to be rational, then solutions to the tangle equa-
tions are computed.

O, P and R are locally unknotted tangles because each of them is a summand of
the unknot via the numerator construction. Therefore, each of O, P and R is either
rational or prime.
Assume that R is prime. Note that if O = (0, 0) then{

N (O +R) = D(R), ∀R
N (O +R +R) = D(R +R), ∀R.

If R is prime then D(R+R) is a composite knot, contradicting equation (iii). There-
fore O cannot be (0, 0). But by Theorem 1·5, R prime, O locally unknotted and
O � (0, 0), imply that O+R is prime. It is known that a 4-plat cannot have two
prime summands, so equation (iii) cannot be satisfied if R is a prime tangle. We
therefore conclude that R is a rational tangle.
Suppose now that O is prime. Theorem 1·3 applied to equation (i) implies that P

is a rational tangle. Thus by Theorem 1·2, P ′ and R′ (2-fold branched cyclic covers
of P and R) are solid tori. Furthermore,{

N (O + P ) = 〈1〉
N (O +R) = 〈1〉 ⇒

{
[N (O + P )]′ � [N (O +R)]′ �S3

and ∂O′ = ∂P ′ = ∂R′ �T 2

where T 2 denotes the two-dimensional torus. O′ �T 2 P ′ � S3 and P ′ a solid torus,
imply that O′ is the bounded complement of some knot KP in S3; that is O′ �
(S3 \ N (KP )) where N (KP ) is the interior of a tubular neighborhood of KP in S3.
Likewise O′ �T 2 R′ �S3 and R′ a solid torus implies that O′ � (S3 \N (KR)) for some
knot KR in S3.
The knots KP and KR are non-trivial because we assumed O prime. But if O′

is the complement of a non-trivial knot, then there is a unique way to Dehn fill
(S3 \ O′) in order to retrieve S3. In other words, if S3 is obtained by Dehn surgery
in the complement of a knot, and the knot is non-trivial, then this Dehn filling is
unique up to ambient isotopy [15]. From Claim 4·1 we know thatR≈ (1) and P ≈ (0),
therefore the Dehn fillings determined by P and R are not equivalent (the gluing
diffeomorphisms are not ambient isotopic). We conclude that O′ is the complement
in S3 of the trivial knot, i.e. O′ is a solid torus, and therefore O is rational.
We have just proved that both O and R are rational. At least one of O and R

must be an integral tangle (defined in Figure 3), because otherwise N (O + R + R)
would be a Montesinos knot which is not a 4-plat [3] thus contradicting equation (iii).
Moreover, O cannot be integral, because integral tangles have parity (0) or parity
(1), and O has parity (0, 0). Therefore R is integral, so R = (r), O = u/v, where
u, r are integers, and v is a non-zero natural number. Observe that r � 0, otherwise
N (O +R) = N (O + 2R).
Lemma 1·1 is used to solve the tangle equations. The first part of the lemma states

that the numerator of the sum of two rational tangles, A1 = p/q and A2 = u/v, is a
4-plat b(α, β) where α = |pv + qu|. This applied to equations (ii), and (iii) leads to the
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Fig. 8. Solutions of the tangle equations
Theorems 4·2 and 4·3 find unique solutions to the two systems of tangle equations posed by Gin
recombination on inversely repeated (panel A), and directly repeated sites (panel B). The solutions
suggest that two negative supercoils are bound by the accessory protein Fis, thus preparing the
synaptic complex for recombination. This corresponds to a tangle O = (−2, 0) that remains fixed
throughout the recombination event. When acting on inversely repeated sites, the enzyme binds
the two gix sites, and with each round of recombination it introduces one positive crossing in the
domain (R = (+1)). When acting on direclty repeated sites, each round of recombination introduces
two positive crossings (R = (+2)).

following system of equations, with integral unknowns u, r, v:

(1)....
{
|u + rv| = 1
|u + 2rv| = 3 .

A set of ten solutions is obtained for the ordered pair (u/v, r). Therefore there are
ten possible solution pairs (O, R) of rational tangles; five different pairs ((−2, 0), (1)),
((1), (−2)), ((5), (−4)), ((−2,−2), (2)), ((4, 1), (−1)), and their mirror images. Parity
considerations lead us to discard any case where O is integral, and the case where
R = (2), leaving only two possible pairs and their mirror images. Furthermore only
one from each of the two mirror images satisfies equation (iii) because the product
knot is chiral (not equivalent to its mirror image). The complete set of tangle solu-
tions (O, R) to the system of two tangle equations (ii) and (iii) is:

{((−2, 0), (1)), ((4, 1), (−1))}.

Of these two tangle solutions, only (O, R) = ((−2, 0), (1)) satisfies tangle equation (iv).

What can be said about tangle P ? We showed that P ≈ (0) (Claim 4·1) and that P
is locally unknotted (Theorem 4·2). However P appears only in equation (i), and a
tangle equation in one rational unknown has infinitely many rational solutions [10].
The computation of the solutions (O, R) in Theorem 4·2 does not take into account
equation (i), however the theorem shows that the system of four tangle equations
has a unique solution pair (O,R). It is possible to argue, on biological grounds, that
P = (0) [29, 30]. Note that assuming P = (0) would lead to a unique solution to the
system with only equations (i)–(iii).
In biological terms, when reacted on a substrate with gix sites in the inverted

orientation, Gin is specific for the (−2, 0) synaptic complex and each round of re-
combination adds one positive crossing to the substrate. The existence of a unique
solution to the system of tangle equations arising fromGin recombination where only
the substrate and three products are specified allows prediction of further products.
For example the fourth product of recombination is predicted to be the (−)5-twist
knot ≺ 2, 2, 1 � which was also observed experimentally [19].
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In [19] it was found that, under certain conditions, Gin can also act on substrates

with directly repeated gix sites. We will next show that the proposed mechanism
for this reaction is very similar to the one seen in the previous case. The enzyme
recognizes and fixes the two negative supercoils as before, emphasizing the specificity
for the (−2, 0) synaptic complex. But the previous mechanism R= (+1) would in this
case result in a mismatch in the sequence, and the loose ends would not be able to
religate, forcing the enzyme to act again. We show here that for directly repeated
sites, two positive crossings are added after each single event of recombination.

Theorem 4·3 (Directly Repeated Sites). Suppose that the tanglesO,P andR satisfy
the following:
(i) N (O + P ) = ≺ 1 �;
(ii) N (O +R) = ≺ 3 �;
(iii) N (O +R +R) = ≺ 1, 2, 2 � = (−5) twist;

then (O, R) ∈ {((−2, 0), (2)); ((2, 1, 1, 2), (−2))}.
If in addition

(iv) N (0 +R +R +R) = ≺ 1, 4, 2 � = (−7) twist
then (O, R) = ((−2, 0), (2)) and

(v) N (0 + 4R) = (−9) twist knot.
More generally

(n+1) N (0 + nR) = −(2n + 1) twist knot.

Proof. We proceed as in Theorem 4·2, by showing that O and R are rational before
finding solutions to the tangle equations using Lemma 1·1.
If O or P are locally knotted, then N(O+P) is a non-trivial knot, contradicting

equation (i). If R is locally knotted, then O+R is locally knotted. This means that
N ((O + R) + R) is composite, contradicting equation (iii). Therefore O, P and R are
locally unknotted.
If R is prime then, as in Theorem 4·2, O � (0, 0) is locally unknotted and by

Theorem 1.5, O+R is prime, which contradicts Theorem 1·3. Therefore R must be
rational.
If O is prime, then by Theorem 1·3 and equations (i), (ii) and (iii), P, R and R+R

are rational. By Theorem 1·2, P ′, R′ and (R+R)′ are solid tori.

b(1, 1) = N (O + P )⇒ S3�O′ �T 2 P ′

where ∂O′ = ∂P ′ = ∂R′ �T 2. Therefore O′ is the bounded complement of some knot
K in S3, and K is non-trivial (since O is prime). Likewise,

b(3, 1) = N (O +R)⇒ L(3, 1)�O′ �T 2 R′

Then L(3, 1) is obtained by Dehn surgery on some non-trivial knot K. Furthermore
L(7, 3) is obtained by another Dehn surgery on the same knot K. By Theorem 1·4,
O′ is is a solid torus (i.e. K is trivial). We conclude that O is a rational tangle.
Summarizing, O and R are rational, and P is locally unknotted. As in the proof

of Theorem 4·2, we have that O is rational and R is integral. Solving the absolute
value equations related to tangle equations (i), (ii) and (iii) leads to two mirror image
solution pairs represented by (O, R) = ((−2, 0), (2)) and (O, R) = ((2, 1, 1, 2), (−2)).
Only the first solution satisfies equation (iv), thus we have the unique solution
(O, R) = ((−2, 0), (2)) to the system of the four tangle equations (i)-(iv). With this we
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can predictN (O+4R) = 92; in generalN (O+nR) is the negative twist knot (2n+1)2.
As before, P appears in only one tangle equation, and is therefore undetermined, but
one can reasonably argue on biological grounds that P = (0).

5. Mutant Gin

In the next few paragraphs we sketch some further steps that we have undertaken
in the study of Gin and of a mutant of Gin that does not require accessory factors.
Our results will be included in a future paper.
We have given a mathematical proof that Gin recombination is specific for the

(−2, 0) synaptic complex, and that upon recombination either one or two positive
crossings (i.e. R= (1) or R= (2)) are added to the domain, depending on the relat-
ive orientations of the sites. Furthermore, proper Gin recombination requires three
accessory factors: negative supercoiling; an enhancer sequence; and the protein Fis.
A few questions arise: how is Gin specific for the (−2, 0) synaptic complex; what are
the roles of the accessory factors? A mutant of Gin was created experimentally [20,
21] to address these questions. Recombination by the mutant neither required Fis
nor negative supercoiling. It is known that wild-type Gin mediates DNA inversion
between two inversely repeated recombination sites, and that this action produces
(−n)-twist knots exclusively. When reacted with inversely repeated sites [5], mutant
Gin produced a much wider range of knot types, including torus knots. The spectrum
of solutions was so complex that the order in which the products of recombination
appeared could not be directly determined from the experiments. The first thing
that one may ask is whether all the knots observed can be accommodated in a single
recombination pathway, i.e. can a system of equations be stated and a solution pair
(O, R) be found that generates the complete observed knot spectrum?
As a result, given the knot spectrum generated by mutant Gin, one has to find all

possible systems of equations that accommodate the data. If there is no single system
that accommodates all the data, then what is the smallest number of systems that
will? Once the possible pathways are determined, the corresponding tangles O and
R have to be proved rational, and solutions found. We observe that if O is rational
and P =(0), with N (O + P ) = ≺ 1 �, then O=(−m, 0).
In addition computational methods can be used to find all possible systems of

equations (reaction pathways) for a given set of products. In fact by assuming R =
(±1) it can be proven that in mutant Gin recombination O cannot be constant, and
therefore concluded that mutant Gin uses more than one synaptic complex of the
form O = (−m, 0).

6. Conclusions

We have given mathematical proofs, based on the tangle model, that in Gin re-
combination the enzyme and accessory proteins bind the DNA substrates at the
two recombination sites, fixing two crossings that correspond to O = (−2, 0). For
inversely repeated sites, each round of recombination adds a new crossing to the
domain (R = (+1)). Similarly, for directly repeated sites R = (+2). These models
were previously proposed in an experimental context by Kanaar et al. [19] as pos-
sible mechanistic explanations to Gin data. Our work ensures that under the model’s
assumptions these solutions are unique. Since the reasoning here is substantially
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independent of the arguments given in [19], the uniqueness proved for this model is
rather convincing.
The Gin system is one of the few where the entire tangle analysis can be done rigor-

ously, starting from simple and plausible assumptions, proceeding systematically
without any ad hoc steps, and arriving at a unique, biologically reasonable solution.
It is thus a potential paradigm for situations where the biologists have not been
able to guess the mechanisms of enzymatic action by more intuitive reasoning. We
presented a specific proposed application which involves some challenging steps, and
that will be included in a future publication.
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