1. There’s an interesting logic colloquium at Berkeley this Friday: [click here].

2. In this outline we start using set theory to study logic.

3. Syntax and semantics. First I’ll show how we can formulate many syntactical notions in terms of basic set theory. They have to do with the grammar of phrases constructed in specified ways from a specified collection of symbols. They have nothing to do with possible meanings of those phrases. Handling those is called semantics. We’ll do that later.

4. Strings
 a. Choose any set A, which we’ll call our alphabet; its members we call our symbols.
 b. If $n \in \mathbb{N}$ and $s : \{ m \in \mathbb{N} : m < n \} \to A$, then s is called a string of symbols, and n, its length. Thus, the length of a string is the cardinal of its domain.
 c. The set of all strings is called A^*.
 d. An element $<m,a>$ of a string $s \in A^*$ is called an occurrence of the symbol a in s.
 e. $\phi \in A^*$.
 f. $a \to a^* = \{ <0,a> \}$ is a bijection from A to the set of strings of length 1. It’s hard to remember to distinguish between a and a^*, and most authors don’t.
 g. If s,t are strings of lengths m,n, then their concatenation is the string $r = st$ of length $m + n$ defined by setting $r_i = s_i$ when $0 \leq i < m$ and $r_{m+j} = s_j$ when $0 \leq j < n$. This word stems from the Latin catena for chain. We often omit the dot in st, thus denoting concatenation by juxtaposition.
 h. $\phi s = s = s\phi$ for all $s \in A^*$.
 i. $s(tu) = (st)u$ for all $s,t,u \in A^*$. We often omit the parentheses in these expressions.
 j. $<A^*,\phi>$ is a semigroup with identity, generated by its subset A. It has properties that entitle it to be called the free semigroup with identity with $|A$ generators. I won’t use any of those properties unless I mention them.

5. As symbols for expressing some sentences in Boolean logic I choose an alphabet A that contains
 a. a specific symbol for denoting implication,
 b. some other symbols.

I won’t specify these symbols further until I have to. Just think of them as some sets, used as programmers use various codes in low-level programs. I won’t even say how many variables I must have, until I need to. Later, as we need additional symbols for logical manipulations, I’ll instruct you to consider new, larger, alphabets.

 c. The string whose single member is an occurrence of the implication symbol is denoted here by \Rightarrow.
d. A string whose single member is an occurrence of one of the other symbols is called a variable.

6. The set $F \subseteq A^*$ of implicational formulas is defined recursively:
 a. All variables are implicational formulas.
 b. If p, q are implicational formulas, then $\Rightarrow pq$ is an implicational formula.

Recursive definitions like this are common. It means that F is the smallest set meeting requirements (a, b). Clearly, some set does: the set A^* itself; F is thus the intersection of the family of all sets meeting those requirements.

7. I will often write $(p \Rightarrow q)$ for $\Rightarrow pq$, and often omit the parentheses. But remember, I do so only in the English of these notes, which is independent of the symbols under discussion. I never have to write those—programmers do that—so I haven’t even specified them!