1. **In class, the Cardinals II unit**
 a. I discussed the proof that $\omega + \omega = \omega$. In particular, it was easy to find a formula for the required bijection from \mathbb{N} to $(\mathbb{N} \times \{0\}) \cup (\mathbb{N} \times \{1\})$.
 b. For $n \in \mathbb{N}$, it follows that $\omega \leq n + \omega \leq \omega + \omega = \omega$, so $n + \omega = \omega$. This use of the weak antisymmetry of \leq—i.e., the Cantor–Bernstein theorem—is typical. It lets us avoid nasty proofs.
 c. Some presentations of cardinal arithmetic include subtraction. It’s not very interesting. Nevertheless, you can define $\alpha - \beta$ as the cardinal δ such that $\alpha = \beta + \delta$, provided you can show there is a unique such δ.
 d. Thus if $n \in \mathbb{N}$ then $\omega - n = \omega$.
 e. [Click here](#) for a cartoon. It calls to mind the band-bus chant that starts, “Ninety-nine bottles of beer on the wall, ninety-nine bottles of beer. A bottle of beer fell off the wall, ninety-eight bottles of beer on the wall....” Set theory transcends puerility.
 f. If α is the cardinal of an infinite set A then $\omega + \alpha = \alpha$. **Proof.** We can assume A is disjoint from \mathbb{N}. Since $\omega \leq \alpha$, there is an injection $\alpha : \mathbb{N} \to A$. Define $f : \mathbb{N} \cup A \to A$ by setting $f(n) = a_{2n}$ and $f(a_n) = a_{2n+1}$ for each $n \in \mathbb{N}$, and $f(x) = x$ for each $x \in A - \text{Rng } a$.
 g. I discussed the proof that $\omega \omega = \omega$. It’s visually obvious that there is a bijection from \mathbb{N} to $\mathbb{N} \times \mathbb{N}$, but it would be very hard to write down a formula for the obvious zig-zag function.

2. Martin Davis (1958, 43–45) proved that the formula
 $$f(<x,y>) = \frac{1}{2}((x + y)^2 + 3x + y)$$
 defines a bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} and gave formulas for the components of its inverse. I don’t remember whether that has any visual impact.

3. **In class, or in the office**, students and I have discussed routine exercises 1–10, 12 and substantial problems 1, 2. These are either assigned or will be presented in class.

4. Cardinals of infinite well-ordered sets are called *alephs*. This terminology is due to Cantor, who introduced the sequence of cardinals $\aleph_0, \aleph_1, \aleph_2, \ldots$, beginning with the smallest one. Further, he introduced \aleph_ν for each ordinal ν. According to the well-ordering theorem, which is equivalent to the axiom of choice, every set can be well-ordered, so every cardinal is an aleph. For that reason, the aleph notation is often used for cardinals in general. These notes avoid it because they avoid ordinals. In particular, ω is used here for the smallest infinite cardinal, in place of Cantor’s \aleph_0.
