1. This class period lasted from 10:45 to 13:15, Thursday, May 21, in TH428.

2. First term papers
 a. The second set of term papers came out very well. I was particularly pleased that twelve students’ second-paper grades were more than one point higher than their first-paper grades. Congratulations! (The maximum scores were both 19. Eleven students’ grades varied one point or less, up or down. Four went down more than one point.) Here is the distribution:

 i. 80...100% 15.2...19.0 xxxxx xxxxx x
 ii. 65... 80% 12.4...15.1 xxxxx xx
 iii. 50... 65% 9.5...12.3 xxxxx xx
 iv. 40... 50% 7.6... 9.4 xx
 v. 0 ... 40% ... 7.5

 b. Here are the titles of the top eight papers:

 i. Math and War: How Mathematics Led to America’s Rapid Technological Advancement during World War II
 ii. John von Neumann and Ideas to Potentially Jiggle the Planet
 iii. Znam’s Problem: A Number Theory Wonder
 iv. Artists of Islamic Geometric Patterns
 v. Tropical Mathematics and the Fundamental Theorem of Algebra
 vi. The Period of Wasan
 vii. Finding Their Own Way: Early-Age Thought Process on the Rainbow
 viii. A Conflicted Calculus: The Story of Newton and Leibniz

3. Quiz 4
 a. covered the material mentioned in lectures 21, April 21, through today’s, (but not material in student reports). The corresponding lecture files indicate which sections of Struik and Kennedy were covered. The structure of the quiz was similar to that of the previous ones.
 b. It will be debriefed via individual emails.
 c. The results were bad, in strong contrast to the second term papers. Evidently students gave term-paper work marked precedence over preparation for the quiz. That paid off for the term papers, which were more important. But, should I ever offer this course again, I would insert a unit on studying for a history course.

4. Ms Brown reported on the Bernoulli family. Alongside their famous mathematical achievements, she emphasized family turmoil. The family originated in Antwerp, now in Belgium. Victimized by prejudice against their Calvinist religion, they fled to Basel, Switzerland, but evidently retained personal as well as academic connections with the Low Countries. They dealt with each other deplorably. It surprises me that there is no readily available book-length biographical study of the Ber-
noullis. I’d guess that there are many archival materials available about them in Basel and elsewhere. If so, there’s a wonderful PhD history project!

5. Mr. Yang reported on Japanese mathematics, particularly that known as Wasan, which developed during the period 1639–1868 when Japan closed itself from contact with the outside world. Mathematics had developed there previously, and had been imported to some extent from China and by the Jesuits; the resulting discipline progressed, slowly, during the time of closure. Mr. Yang mentioned some developments in what we would call approximation theory, toward computing π with high accuracy. Most spectacular, though, is the tradition of sangaku, which was evidently not well-known even in Japan until recently. This consisted of intricate Euclidean geometry problems posted in temples as offerings and suggestions for contemplation. Fortunately, they are accessible now in both Japanese and English. After the reopening, Japanese mathematics integrated very rapidly into the worldwide mathematics community.

6. Ms Lee reported on the development of perspective drawing during the Renaissance, particularly in Northern Italy. Various scholars, talented in both art and mathematics, discovered basic principles, extending rudimentary work found even in Euclid. These included Alberti, Brunelleschi, Pacioli, Leonardo da Vinci, Dürer, and others. Soon some of them published manuals to guide artists, and the techniques spread slowly throughout Northern Europe. (It is very interesting to look at paintings from that period displayed in museums, to see how their sophistication depended both on the artist’s ingenuity and on his contact with this influence.) Later, in France, Desargues published material on drawing techniques that eventually led to major theorems in projective geometry. Brook Taylor, an English contemporary of Newton known for Taylor series, published a major work on perspective that introduced some of today’s terminology and methods.

7. Ms Dang reported on the development of hyperbolic geometry. This subject originated with attempts to prove the parallel postulate from the remaining Euclidean postulates. Analysis of attempts by Saccheri, Lambert, Legendre, and others revealed that the authors had left unstated other assumptions, such as the sum of the angles in a triangle’s being 180°. They had merely proved that those assumptions were equivalent to the parallel postulate, just as we found in class that Playfair’s postulate is. In the early 1800s, J. Bolyai, N. Lobachevski, and Gauss all developed enough consequences of a negation of the parallel postulate—that there should be more than one parallel to a given line through a given point not on it—that it seemed that the negation, together with the other Euclidean postulates, entailed a consistent theory, hyperbolic geometry. Gauss didn’t publish, and the others’ work was published only obscurely, hence the subject found little attention for decades. In the mid- to late-1800s, E. Beltrami and F. Klein found that hyperbolic geometry actually precisely describes some mathematical structures, overlooked until then, and is hence a consistent theory. Interest in it then increased markedly, and it now has applications in many other areas of mathematics. (On my advice, Ms Dang omitted all mention of the consequences of another negation of the parallel postulate, that there should be no parallel at all to a given line.
through a given point not on it. That leads to another alternative theory, often
called elliptic geometry, or, less accurately, Riemannian geometry.)

8. Mr. Long reported on the development of trigonometry. A few of the propositions
in Euclid’s Elements are really basic trigonometry. Later work extended them to
handle triangle calculations required for astronomy. This included spherical
trigonometry, and the law of sines in both spherical and plane forms. This develop-
ment occurred in Alexandria, India, and the Middle East. At the same time,
mathematicians in all these areas discovered how to compute accurate tables of
trigonometric functions. Their methods involved use of trigonometric formulas as
well as approximation techniques now regarded as part of calculus. During the
Renaissance, some of this work spread to Germany. The present-day presentation
of trigonometry, and its relation to calculus, is largely the 1700s work of Euler.

9. Mr. Lee reported on the influence of the mathematician Georg Pólya. Born in
Budapest in a Jewish family converted to Christianity, Pólya was educated there.
He only slowly came to emphasize mathematics as his calling. As a junior mathe-
matics professor in Zürich, Pólya started with his friend Gábor Szegő a series of
problem-oriented books in analysis, now available in English. A totally new
approach, these guided many students’ and scholars’ studies of higher mathematics
for years, including my own. In collaboration with Swiss crystallographers, he
applied modern algebra techniques to classify repetitive designs; this provided the
foundation for analysis of many types of art. He contributed many major results
in analysis, probability theory, and combinatorics. Pólya and Szegő emigrated to
the U. S. to escape European oppression, and settled in Stanford. There, Szegő
became chairman, and Pólya lent more emphasis to problem-solving texts. Several
of those have become classics in undergraduate mathematics education. Even after
retirement Pólya continued close contact with local high-school students and
teachers. He was a beloved figure of our community until he died at age 98, about
twenty-five years ago.

10. Mr. Tejada submitted an abstract of his paper on the inadequate treatment of non-
European, particularly Islamic, history of mathematics, in our curriculum and
literature. I tend to agree with his views, particularly concerning elementary
mathematics. That is, if this course had been structured to emphasize only the
mathematics covered through elementary calculus, but otherwise unchanged, the
non-European sources would have been sorely underemphasized. Part of that is
due to my choice of Struik as text, chosen for its conciseness, clarity, revolutionary
role, and price. (And part is due to my not having studied that material.) During
the 1940s Struik was in fact a pioneer in bringing attention to non-European
sources. Much has occurred since, but that still is not found in every such text.
To some extent that is to be expected since the non-European sources are still
undergoing fundamental historical research. But even that work is not yet ade-
quate disseminated. We hope that situation will improve, at an accelerated rate.