Part I. Determine whether the statement is true or false:

1. A vertical line intersects the graph of a function at most once.
2. \(f(x) \) must be defined at \(a \) in order for the limit of \(f \) to exist at \(a \).
3. \(f(x) \) must be defined at \(a \) in order for \(f(x) \) to be continuous at \(a \).
4. The limit exists if and only if both left limit and right limit exist.
5. If \(f(x) \) is continuous at \(a \), then \(\lim_{x \to a} f(x) \) exists.
6. If \(\lim_{x \to 0} f(x) = 2 \) and \(\lim_{x \to 0} g(x) = 0 \), then \(\lim_{x \to 0} \frac{f(x)}{g(x)} \) doesn’t exist.
7. If \(\lim_{x \to 0} f(x)g(x) \) exists, then \(\lim_{x \to 0} f(x)g(x) = f(0)g(0) \).
8. If \(f(1) < 0 \) and \(f(3) > 0 \), then there exists a number \(c \) between 1 and 3 such that \(f(c) = 0 \).
9. If \(f(x) \) is continuous on \([-1, 1]\) and \(f(-1) = 4 \), \(f(1) = 3 \), then there is a number \(c \) such that \(|c| < 1 \) and \(f(c) = \pi \).
10. If \(f(x) \) is continuous at 4 and \(f(4) = 2 \), then \(\lim_{x \to 2} f(4x^2 - 12) = 2 \).
11. If \(f \) is continuous at \(a \), then \(f \) is differentiable at \(a \).
12. If \(f \) is differentiable at \(a \), then \(f \) is continuous at \(a \).
13. If \(f'(a) \) exists, then \(\lim_{x \to a} f(x) = f(a) \).
14. An equation of the tangent line to the parabola \(y = x^2 \) at \((-2, 4)\) is \(y - 4 = 2x(x + 2) \).
15. If \(f \) and \(g \) are differentiable, then \([f(x)g(x)]' = f'(x)g(x) + f(x)g'(x) \).
16. If \(f \) is differentiable, then \(\frac{d}{dx} \sqrt{f(x)} = \frac{f'(x)}{2\sqrt{f(x)}} \).
17. If \(y = e^2 \), then \(y' = 2e \).
18. \(\frac{d}{dx}(10^x) = x10^{x-1} \).
19. \(\frac{d}{dx}(\ln 10) = \frac{1}{10} \).
20. If \(g(x) = x^5 \), then \(\lim_{x \to 2} \frac{g(x) - g(2)}{x - 2} = 80 \).
21. \(\frac{d}{dx} \ln |x| = \frac{1}{|x|} \).

Part II. Show your work.

1. All homework assignments.
2. Section 2.5, p102: 47;
3. Chapter 2 Practice Exercises, p117: 1, 5, 9, 13, 19, 23, 24, 27, 45, 51, 55b, 56e.
4. Chapter 3 Practice Exercises, p213: 5, 9, 12, 16, 27, 33, 39, 45, 57, 59, 64, 67, 77, 84, 85, 98, 103, 125, 128, 131