Part I. All HW problems of Chapters 1 - 3, 5.1, 5.2.

Part II. True or False (Some of these problems require calculations)

1. A system of 4 linear equations in three unknowns is always inconsistent.
2. If the 4x4 matrix A has rank 4, then any linear system with the coefficient matrix A will have a unique solution.
3. There exists a 5x5 matrix A of rank 4 such that the system $A\vec{x} = \vec{0}$ has only the solution $\vec{x} = \vec{0}$.
4. Vector \[
\begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix}
\] is a linear combination of vectors \[
\begin{bmatrix}
4 \\
5 \\
6
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
7 \\
8 \\
9
\end{bmatrix}
\]
5. If A is a nonzero matrix of the form \[
\begin{bmatrix}
a & -b \\
b & a
\end{bmatrix}
\], then the rank of A must be 2.
6. There exists a 2x2 matrix A such that
 \[
 A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \text{and} \quad A \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}.
 \]
7. If \vec{u}, \vec{v} and \vec{w} are nonzero vectors in \mathbb{R}^2, then \vec{w} must be a linear combination of \vec{u} and \vec{v}.
8. If \vec{u} is a linear combination of vectors \vec{v} and \vec{w}, and \vec{v} is a linear combination of vectors \vec{p}, \vec{q}, and \vec{r}, then \vec{u} must be a linear combination of \vec{p}, \vec{q}, and \vec{r} and \vec{w}.
9. If A is a 4x3 matrix of rank 3 and $A\vec{v} = A\vec{w}$ for two vectors \vec{v} and \vec{w} in \mathbb{R}^3, then $\vec{v} = \vec{w}$.
10. The function $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x - y \\ y - x \end{bmatrix}$ is a linear transformation.
11. Matrix \[
\begin{bmatrix}
1/2 & -1/2 \\
1/2 & 1/2
\end{bmatrix}
\] represents a rotation.
12. If $AB = I_n$ for two $n \times n$ matrices A and B, the A must be the inverse of B.
13. The function $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ 1 \end{bmatrix}$ is a linear transformation.
14. Matrix \[
\begin{bmatrix}
-0.68 & 0.8 \\
-0.8 & -0.6
\end{bmatrix}
\] represents a rotation.
15. \[
\begin{bmatrix}
1 & k \\
0 & 1
\end{bmatrix}^3 = \begin{bmatrix}
1 & 3k \\
0 & 1
\end{bmatrix}
\] for all real numbers k.
16. If $A^2 = I_n$, then A (matrix) must be invertible.
17. The equation \(A^{-1} = A \) holds for all 2x2 matrices \(A \) representing a reflection.
18. There exist a 2x3 matrix \(A \) and a 3x2 matrix \(B \) such that \(AB = I_2 \).
19. There exist a 3x2 matrix \(A \) and a 2x3 matrix \(B \) such that \(AB = I_3 \).
20. If the linear system \(A^2 \vec{x} = \vec{b} \) is consistent, then the system \(A \vec{x} = \vec{b} \) is consistent.
21. If \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \) are linearly independent vectors in \(\mathbb{R}^n \), then they must form a basis of \(\mathbb{R}^n \).
22. The kernel of any invertible matrix consists of the zero vector only.
23. If \(2\vec{u} + 3\vec{v} + 4\vec{w} = 5\vec{u} + 6\vec{v} + 7\vec{w} \), then vectors \(\vec{u}, \vec{v} \) and \(\vec{w} \) must be linearly dependent.
24. The column vectors of a 5x4 matrix must be linearly dependent.
25. If the kernel of a matrix \(A \) consists of the zero vector only, then the column vectors of \(A \) must be linearly independent.
26. If \(\vec{u}, \vec{v} \) and \(\vec{w} \) are in a subspace \(V \) of \(\mathbb{R}^n \), then the vector \(2\vec{u} + 3\vec{v} + 4\vec{w} \) must be in \(V \) as well.
27. If vectors \(\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4 \) are linearly independent, then vectors \(\vec{v}_1, \vec{v}_2, \vec{v}_3 \) are linearly independent.
28. Matrix \(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \) is similar to \(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \).
29. If a 2x2 matrix \(P \) represents the orthogonal projection onto a line in \(\mathbb{R}^2 \), then \(P \) must be similar to the matrix \(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \).
30. If vectors \(\vec{u}, \vec{v} \) and \(\vec{w} \) are linearly dependent, then vector \(\vec{w} \) must be a linear combination of \(\vec{u} \) and \(\vec{v} \).
31. If \(A \) and \(B \) are invertible matrices of size \(n \times n \), then \(AB \) must be similar to \(BA \).
32. If \(AB = 0 \) for two 2x2 matrices \(A \) and \(B \), then \(BA \) must be the zero matrix as well.
33. \(\mathbb{R}^2 \) is a subspace \(\mathbb{R}^3 \).
34. For every subspace \(V \) of \(\mathbb{R}^3 \), there exists a 3x3 matrix \(A \) such that \(V = \text{Im}(A) \).
35. If the kernel of a 5x4 matrix \(A \) consists of the zero vector alone, and if \(AB = AC \) for two 4x5 matrix \(B \) and \(C \), the matrices \(B \) and \(C \) must be equal.
36. There is a subspace \(V \) of \(\mathbb{R}^5 \) such that \(\text{dim}(V) = \text{dim}(V^\perp) \), where \(V^\perp \) denotes the orthogonal complement of \(V \).
37. Every invertible \(n \times n \) matrix \(A \) can be expressed as the product of an orthogonal matrix (columns of the matrix forms an ONB of \(\mathbb{R}^n \)) and an upper triangular matrix.
38. If \(\vec{x} \) and \(\vec{y} \) are two vectors in \(\mathbb{R}^n \), then the equation \(||\vec{x} + \vec{y}||^2 = ||\vec{x}||^2 + ||\vec{y}||^2 \) must hold.
39. Let \(\vec{v}_1, \ldots, \vec{v}_m \) be a basis of \(V \). A vector \(\vec{x} \) in \(\mathbb{R}^n \) is orthogonal to \(V \) if and if \(\vec{x} \) is orthogonal to all the vectors \(\vec{v}_1, \ldots, \vec{v}_m \).
40. Calculate: find the length of the vector \(\vec{x} = 7\vec{u}_1 + \vec{u}_2 - 4\vec{u}_3 - 2\vec{u}_4 + \vec{u}_5 \), where \(\vec{u}_1, \ldots, \vec{u}_5 \) are orthonormal vectors in \(\mathbb{R}^{10} \).
41. Among all vectors of \(\mathbb{R}^n \) whose components add up to 1, find the vector of minimal length.
42. Can you find a line \(L \) in \(\mathbb{R}^n \) and a vector \(\vec{x} \) in \(\mathbb{R}^n \) such that \(\vec{x} \cdot \text{Proj}_L \vec{x} < 0 \)? Why?
43. If \(A \) has orthogonal columns, but not orthonormal. What are the \(Q \) and \(R \) in the QR-factorization?