I. True or False:

1. If \(f \) is continuous, then \(\int_1^3 f(v)\,dv = f(3) - f(1) \).
2. Let \(f(x) \) be integrable, and define \(g(x) = \int_1^x f(x)\,dx \). Then \(g'(x) = F(x) \), where \(F(x) \) is an antiderivative of \(f(x) \).
3. If \(f \) and \(g \) are continuous and \(f(x) \geq g(x) \) for \(a \leq x \leq b \), then \(\int_a^b f(x)\,dx \geq \int_a^b g(x)\,dx \).
4. Let \(F(x) \) be an antiderivative of \(f(x) \). Then \(\int_a^b f(x)\,dx = \int_a^b F'(x)\,dx = F(b) - F(a) \).
5. \(\int_1^x \frac{4}{x} (\sin \frac{x}{2} \cos \frac{x}{2})\,dx = \sin \frac{x}{2} \cos \frac{x}{2} - \frac{\pi}{16} \).
6. \(\frac{d}{dx} \int_a^b f(t)\,dt = f(x) \), where \(a \) and \(b \) are constants.
7. If \(f(-x) = f(x) \), then \(\int_{-a}^a f(x)\,dx = 0 \).
8. \(\int_0^1 \frac{1}{x^3}\,dx \) is convergent.
9. \(\int_1^\infty \frac{1}{x^2}\,dx \) is convergent.

II. Show your work:

1. All Homework problems.

2. (a) Find the derivatives of the functions:
 (i) \(y = \int_0^x \frac{3}{\sqrt{7u}}\,du \)
 (ii) \(y = \int_x^3 \sqrt{7\sin t}\,dt \).

 (b) Write the given combinations of integrals as a single integral, and evaluate if possible.
 (i) \(\int_0^5 f(x)\,dx + \int_0^5 f(x)\,dx - \int_0^5 f(x)\,dx \)
 (ii) \(\int_0^5 f(x)\,dx + \int_0^5 f(x)\,dx \)

3. Evaluate the integrals. Use substitution whenever necessary. Pay attention to improper integrals.
 (i) \(\int \cos^4 x \sin^3 x\,dx \)
 (ii) \(\int x^2(1 + 2x^3)^3\,dx \)
 (iii) \(\int \frac{\sec^2 \theta \tan \theta}{\sec \theta + \tan \theta}\,d\theta \)
 (iv) \(\int \frac{x^3}{1+x^2}\,dx \). [Hint: \(\int \frac{1}{1+x^2}\,dx = \tan^{-1} x + c \).]
 (v) \(\int (\ln x)^2\,dx \)
 (vi) \(\int e^{-\theta} \cos 2\theta\,d\theta \)
 (vii) \(\int \frac{1}{x^2 \sqrt{x^2 - 9}}\,dx \)
 (viii) \(\int \frac{3x^2 + 4x + 5}{(x^2 + 1)(x^2 + 4)}\,dx \)
 (ix) \(\int_0^1 \frac{4u}{4u^3 + 1}\,du \)
 (x) \(\int_0^\infty \frac{1}{1 + x^2}\,dx \)

4. A particle moves along a line with the velocity function \(v(t) = t^2 - t \). Find (a) the displacement and (b) the distance traveled by the particular during the time interval [0, 5].

5. Find the area of the region bounded by the curves \(y = x^4 - 4x^2 + 4 \) and \(y = x^2 \).
6. Find the area of the region bounded by the functions \(y^2 = 4x \) and \(4x - y = 6 \).
7. Use the method of cylindrical shell to find the volume generated by rotating the region bounded by the given curves and the specified axis. Sketch the region and a typical shell.
 \(y = 4x - x^2, \quad y = 8x - 2x^2; \quad \text{about } x = -2 \).

8. Find the volume of the solid obtained by rotating the region bounded by the curves \(x^2 - y^2 = a^2 \) and \(x = a + h \) (where \(a > 0, h > 0 \)) about the \(y \)-axis.
9. Find the volume of a solid whose base is a circular disk with radius \(r \), and parallel cross-sections perpendicular to the base are squares.
10. Let \(f(x) = e^x + \frac{1}{x} e^{-x} \) for \(0 \leq x \leq 1 \). Find the length of the graph of \(f \).
11. A tank has the shape of a hemisphere with radius 5 meters (opening up). It is filled with water to a height of 4 meters. Find the work required to empty the tank by pumping all of the water to the top of the tank. (Water density is 1000 kg/m\(^3\).)
12. Estimate the minimum number of subintervals needed to approximate the integral \(\int_0^3 \frac{1}{\sqrt{x+1}}\,dx \) with an error less than \(10^{-6} \) by (a) the Trapezoidal Rule and (b) by the Simpsons Rule.