Part I. Determine whether the statement is true or false:

1. If \(\lim_{n \to \infty} a_n = 0 \), then \(\sum_n a_n \) is convergent.
2. If \(\sum c_n 6^n \) is convergent, then \(\sum c_n (-2)^n \) is convergent.
3. If \(\sum c_n 6^n \) is convergent, then \(\sum c_n (-6)^n \) is convergent.
4. If \(\sum c_n x^n \) diverges at \(x = 6 \), then it diverges when \(x = 10 \).
5. If \(0 \leq a_n \leq b_n \), and \(\sum b_n \) diverges, then \(\sum a_n \) diverges.
6. If \(\sum a_n \) is divergent, then \(\sum |a_n| \) is divergent.
7. If \(f(x) = 2x - x^2 + \frac{1}{2}x^3 - \cdots \) converges for all \(x \), then \(f''(0) = 2 \).
8. If \(\sum a_n \) converges, then \(\lim_{n \to \infty} a_n = 0 \).
9. If \(a_n > 0 \) and \(\sum a_n \) converges, then \(\sum (-1)^n a_n \) converges.
10. If \(p > 1 \), then \(\sum_{k=1}^{\infty} \frac{8}{k^p} \) converges.

Part II. Show your work:

1. All homework assignments.
2. Determine if the integrals are convergent. Evaluate those that are convergent.
 \[\int_2^\infty \frac{1}{(x - 3)^{4/3}} \, dx, \quad \int_0^2 \frac{x - 3}{2x - 3} \, dx \]
3. Determine if the series is convergent. If it is convergent, find the sum.
 \[\sum_{k=0}^{\infty} 4^{-k}, \quad \sum_{k=0}^{\infty} \frac{2k}{k + 3} \]
4. Determine if the series converges absolutely, conditionally or diverges.
 \[\sum_{k=1}^{\infty} (-1)^k \frac{k}{k^2 + 1} \]
5. Find the radius and interval of convergence \(\sum_{k=0}^{\infty} \frac{4}{k!}(x - 2)^k \).
6. Find the Taylor polynomial of degree 4 of \(f(x) = \sin x + e^{3x} \) about the center \(a = 0 \).
7. Sketch the curve of the equation \(r = \cos 2\theta \) in polar coordinate.
8. Find the area of the region outside of \(r = 1 \) and inside of \(r = 4 \cos \theta \).