Homework 1

(1) Suppose \(\{a_n\} \) and \(\{b_n\} \) are positive sequences such that \(\lim_{n \to \infty} \frac{a_n}{b_n} = 0 \). Prove that \(\sum a_n \) converges if \(\sum b_n \) converges.

(2) Let \(\sum a_n \) and \(\sum b_n \) be convergent series. Show that
\[
\sum (a_n \pm b_n) = \sum a_n \pm \sum b_n.
\]

(3) Suppose \(\{f_n\} \) is a uniformly convergent sequence of continuous functions on \([0, 1]\). Show that \(\{f_n\} \) must be bounded.

(4) Let \(f_n(x) = e^{x^2/n} \). Show \(\{f_n\} \) is uniformly convergent on every bounded interval, but is not uniformly convergent on \(\mathbb{R} \).

(5) WADe, pg 191, #3] Suppose that \(f_n \to f \) and \(g_n \to g \) as \(n \to \infty \), uniformly on some set \(E \subseteq \mathbb{R} \).

(a) Prove that \(f_n + g_n \to f + g \) and \(\alpha f_n \to \alpha f \) as \(n \to \infty \) uniformly on \(E \) for all \(\alpha \in \mathbb{R} \).

(b) Prove that \(f_n g_n \to fg \) pointwise on \(E \).

(c) Prove that if \(f \) and \(g \) are bounded on \(E \), then \(f_n g_n \to fg \) uniformly on \(E \).

(d) Show that (c) may be false when \(g \) is unbounded.