Chapter 2. Pseudoframes for subspaces (PFFS)

2.1. Motivation and Examples

Example 1 (Sampling). Let $PW_{\frac{1}{4}}$ be the space of bandlimited signals of bandwidth $\Omega = [-\frac{1}{4}, \frac{1}{4})$. Let

$$\hat{\phi}(\gamma) = \begin{cases} 1, & |\gamma| \leq \frac{1}{4} \\ \text{decaying to zero continuously}, & \frac{1}{4} < |\gamma| < \frac{1}{2} \\ 0, & |\gamma| \geq \frac{1}{2} \end{cases}$$

Then by the Shannon Sampling Theorem for sampling interval, $T = 1$, satisfying the Nyquist Rate: $2T \cdot \frac{1}{4} < 1$ we have,

$$\forall f \in PW_{\frac{1}{4}}, \quad f(t) = \sum_{n} f(n) \phi(t - n) \quad (1)$$

Observations:

1. $\{\phi(t - n)\}$ is not a basis nor a frame for $PW_{\frac{1}{4}}$ since $\hat{\phi}(t) \notin PW_{\frac{1}{4}}$.
2. Moreover, if one puts $\{\phi(t - n)\}$ in its closed linear span, $sp\{\phi(t - n)\}$.
 $\{\phi(t - n)\}$ is not even a frame for its linear span $sp\{\phi(t - n)\}$. This is because of the following theorem.

Theorem 0.1 Let $\phi \in L^2(\mathbb{R})$. $\{\phi(t - n)\}_n$ forms a frame for $sp\{\phi(t - n)\}$ if and only if there exists $0 < A \leq B < \infty$ s.t.

$$A \leq \sum_{k} |\hat{\phi}(\gamma + k)|^2 \leq B \quad \text{a.e. on } [0,1] \setminus N$$

where $N = \{\gamma \in [0,1) \mid \sum_{k} |\hat{\phi}(\gamma + k)| = 0\}$.
For convenience, we write $\Phi(\gamma) \equiv \sum_k |\hat{\phi}(\gamma + k)|^2$.

Example 2 (Exact frame / Riesz basis)

Let $\{x_n^\ast\}$ be an exact frame of $\mathcal{X} \subseteq \mathcal{H}$. Since $\{x_n\}$ is a minimum system, there is a unique biorthogonal dual $\{x_n^\ast\} \subseteq \mathcal{X}$ s.t. $\langle x_m^0, x_n^\ast \rangle = \delta_{mn}$, and

$$\forall f \in \mathcal{X}, \quad f = \sum_n \langle f, x_n^0 \rangle x_n^\ast = \sum_n \langle f, x_n^\ast \rangle x_n^0$$

Now, consider any sequence $\Delta x_n \in X^\perp$, and let $x_n = x_n^0 + \Delta x_n$.

Claim:

1. $\langle x_m, x_n^\ast \rangle = \langle x_n^0 + \Delta x_n, x_n^\ast \rangle = \delta_{mn}$.
2. For all $f \in \mathcal{X}$,

$$\sum_n \langle f, x_n \rangle x_n^\ast = \sum_n \langle f, x_n^0 + \Delta x_n \rangle x_n^\ast = \sum_n \langle f, x_n^0 \rangle x_n^\ast = f.$$

We notice that there is a frame-type representation for all functions in \mathcal{X}. It is nevertheless not a conventional frame representation since $\{x_n\}$ is not in \mathcal{X}.

Example 3 Let $\{\phi(t - n)\}$ be an exact frame of $V_0 = \overline{\mathcal{P}}\{\phi(t - n)\}$. Then, $A \leq \Phi(\gamma) \leq B$ a.e. for some $0 < A \leq B < \infty$. Then there exists a unique biorthogonal dual function $\tilde{\phi} \in V_0$ s.t. $\{\phi(t - n)\}$. In fact, in terms of the Fourier transform of $\tilde{\phi}$,

$$\hat{\phi}(\gamma) = \frac{\hat{\phi}(\gamma) \cdot \hat{\phi}(\gamma)}{\sum_k |\hat{\phi}(\gamma + k)|^2} = \frac{1}{\Phi} \cdot \hat{\phi}(\gamma)$$

Since $\Phi(\gamma) = \sum_k |\hat{\phi}(\gamma + k)|^2$ is not a constant, the Fourier coefficients $\{\hat{h}_n\}$ of $\frac{1}{\Phi}$ is not finite. Therefore, assuming ϕ is symmetric and compactly supported, then

$$\tilde{\phi}(t) = \sum_k \hat{h}_n \phi(t - n)$$

Therefore, $\tilde{\phi}(t)$ is not compactly supported in V_0.

This suggests that in order to find compactly supported biorthogonal dual functions $\tilde{\phi}$, one must go beyond V_0.

Conclusion In order to analyze a subspace \mathcal{X}, frame-like sequence $\{x_n\}$ and $\{x_n^\ast\}$ need not be contained in \mathcal{X}.

2
2.2. Definition of Pseudo frames for subspaces (PFFS) and basic properties

Definition 0.2 (PFFS) Let \mathcal{X} be a closed subspace of a separable Hilbert space. Let $\{x_n\} \subseteq \mathcal{H}$ be a Bessel sequence w.r.t. \mathcal{X}, and let $\{x_n^*\} \subseteq \mathcal{H}$ be Bessel sequence in \mathcal{H}. We say that $\{x_n\}$ is a pseudoframe for the subspace \mathcal{X} w.r.t $\{x_n^*\}$ if

$$\forall f \in \mathcal{X}, \quad f = \sum_n \langle f, x_n \rangle x_n^* \tag{2}$$

Proposition 0.3 The following are equivalent:

1. For all $f \in \mathcal{X}$, and for all $g \in \mathcal{H}$, $\langle f, g \rangle = \sum_n \langle f, x_n \rangle \langle x_n^*, g \rangle$.

2. For all $f \in \mathcal{X}$, $f = \sum_n \langle f, x_n \rangle x_n^*$.

Remarks:

(a) PFFS is not "symmetric." Consequently, $\{x_n\}$ and $\{x_n^*\}$ is not commutative.

(b) Because of the non-commutativity of PFFS, the construction of PFFS has two very different directions. One direction is to construct $\{x_n\}$ from given $\{x_n^*\}$; the other direction is to construct $\{x_n^*\}$ from given $\{x_n\}$.

(c) There are conditions with which $\{x_n\}$ and $\{x_n^*\}$ are commutative.

(d) In a special case, let $\{x_n\} \subseteq \mathcal{H}$ be a Bessel sequence in \mathcal{H}. Then the right hand side of PFFS (2) is well defined in \mathcal{H} (i.e. even for $f \notin \mathcal{X}$, $\sum_n \langle f, x_n \rangle x_n^*$ will still be a meaningful approximation of $f \in \mathcal{H}$ in \mathcal{X}. We will discuss more about such approximations later.

2.3. Basic Characterization of PFFS and Geometric Properties

Theorem 0.4 Let $\{x_n\}$ and $\{x_n^*\}$ be two sequences in \mathcal{H} (not necessarily in \mathcal{X}). Assume $\{x_n\}$ is Bessel w.r.t. \mathcal{X}, and $\{x_n^*\}$ is Bessel in \mathcal{H}. Define $U: \mathcal{X} \to l^2$ and $V: l^2 \to \mathcal{H}$ by:

$$\forall f \in \mathcal{X}, \quad Uf = \{\langle f, x_n \rangle\} \tag{3}$$

and,

$$\forall c \in l^2, \quad Vc = \sum_n c(n)x_n^* \tag{4}$$

respectively. Suppose that \mathcal{P} is a projection onto \mathcal{X}. Then $\{x_n\}$ and $\{x_n^*\}$ forms a PFFS for \mathcal{X}, if and only if

$$VUP = \mathcal{P}$$

3
Proof: Assume that \(\{ x_n \} \) and \(\{ x_n^* \} \) form a PFFS for \(\mathcal{X} \), then for all \(f \in \mathcal{H} \),

\[
\mathcal{P} f = \sum_n (\mathcal{P} f, x_n^*) x_n^* \\
= \sum_n (U \mathcal{P} f) x_n^* \\
= V U \mathcal{P} f.
\]

Therefore, \(V U \mathcal{P} = \mathcal{P} \). Similarly, the other direction holds.

Remark: Here \(\mathcal{P} \) is any projection from \(\mathcal{H} \) onto \(\mathcal{X} \). It is typically a non-orthogonal projection.

2.3.1. Orthogonal projections vs. non-orthogonal projections

Orthogonal Projections have the following properties \(\mathcal{P}^2 = \mathcal{P} \), \(\mathcal{N}(\mathcal{P}) \perp \mathcal{R}(\mathcal{P}) \). Hence \(\mathcal{N}(\mathcal{P}) \oplus \mathcal{R}(\mathcal{P}) = \mathcal{H} \). Consequently, \(\mathcal{P}^* = \mathcal{P} \)

Nonorthogonal projections satisfy the following: \(\mathcal{P}^2 = \mathcal{P} \), \(\mathcal{N}(\mathcal{P}) \cap \mathcal{R}(\mathcal{P}) = \{0\} \), and \(\mathcal{N}(\mathcal{P}) + \mathcal{R}(\mathcal{P}) = \mathcal{H} \). Here the + stands for linear set addition.

Notation: \(\mathcal{P} \equiv \mathcal{P}_{\mathcal{X},\mathcal{N}(\mathcal{P})} \) which is often termed a projection onto \(\mathcal{X} \) along the subspace \(\mathcal{N}(\mathcal{P}) \). One can verify that \(\mathcal{P}^* = \mathcal{P}_{\mathcal{N}(\mathcal{P})^\perp,\mathcal{X}^\perp} \).

2.3.2. The consistent principle associated with PFFS

Theorem 0.5 Let \(\{ x_n \} \) and \(\{ x_n^* \} \) be a PFFS for \(\mathcal{X} \). Assume further that \(\{ x_n \} \) is Bessel in \(\mathcal{H} \). Suppose \(\mathcal{N}(\mathcal{P}) = \overline{\mathcal{P}}\{ x_n \}^\perp \) Then,

\[
U \mathcal{P} = U.
\]

Proof: (a) It is true that \(\overline{\mathcal{P}}\{ x_n \}^\perp \) is a complement of \(\mathcal{X} \).

(b) \(\forall f \in \mathcal{H}, \ U f = \{\langle f, x_n \rangle\} U \mathcal{P} f = \{\langle P f, x_n \rangle\} = \{\langle f, P_{\mathcal{N}(\mathcal{P})^\perp,\mathcal{X}^\perp} x_n \rangle\} \{\langle f, x_n \rangle\} \), since \(\mathcal{N}(\mathcal{P})^\perp = \overline{\mathcal{P}}\{ x_n \} \).

Therefore, \(U \mathcal{P} = U \).
2.3.3. Meaning of the above theorem?

Assume that the reconstruction of f from $Uf = \{\langle \tilde{f}, x_n \rangle \}$ is not achievable in the original function space of f. Instead, assume that an approximation of f on a subspace \mathcal{X} is possible. Then the PFFS with $\mathcal{N}(\mathcal{P}) = \mathcal{P}(x_n)^\perp$ provides a consistent approximation of f in \mathcal{X} in which the "measurement" of the original f by $\{\langle f, x_n \rangle \}$ is the same/consistent with the "measurement" of the approximation of f by $\{\langle \tilde{f}, x_n \rangle \} = \{\langle \mathcal{P}f, x_n \rangle \}$.

Therefore, even though $\tilde{f} \neq f$, the measurement of f and \tilde{f} in terms of $\langle \cdot, x_n \rangle$ are the same/consistent.

2.3.4. Other geometric properties of PFFS

1. If $\mathcal{N}(\mathcal{P}) = \mathcal{X}^\perp$ (i.e. $\mathcal{P} = P$ is an orthogonal projection), then PFFS provides a least square approximation of f in \mathcal{X} in the following way

$$\forall f \in \mathcal{H}, \quad Pf = \sum_n \langle Pf, x_n \rangle x_n^* = \langle f, Px_n \rangle x_n^*$$

Therefore, simply take the orthogonal projection of x_n onto \mathcal{X}, a PFFS provides a least squares approximation of $f \in \mathcal{H}$.

2. Let \mathcal{P} be any non-orthogonal projection onto \mathcal{X}. Then PFFS provides a non-orthogonal projection of any $f \in \mathcal{H}$ in the following way

$$\forall f \in \mathcal{H}, \quad \mathcal{P}f = \sum_n \langle f, P^*x_n \rangle x_n^*$$

Therefore, starting from a PFFS, one can generate an explicit non-orthogonal projection, while performing the "reconstruction."

3. Intuition on the application of the non-orthogonal projection property of PFFS. For noise removal: by "steering" $\mathcal{P}(x_n)$ to be perpendicular to the noise subspace, one can remove the noise while doing reconstruction, i.e., if $g = f + n$, $f \in \mathcal{X}$

$$\sum_n \langle g, x_n \rangle x_n^* = \sum_n \langle f + n, x_n \rangle x_n^* = \sum_n \langle f, x_n \rangle x_n^* = f$$

Obviously, this is not possible with a basis or conventional frame of \mathcal{X}.

5
Sectin 2.4. The Two Directions of Constructions

The interpolation approach Given \(\{x_n\} \) to construct \(\{x_n^*\} \) that forms a PFFS for \(\mathcal{X} \) (i.e., for all \(f \in \mathcal{X} \), \(f = \langle f, x_n \rangle x_n^* \)).

This direction of approximation is termed interpolation approach because such problems would correspond to reconstructions of a function from its “samples” \(\{\langle f, x_n \rangle\} \).

The approximation approach Given \(\{x_n^*\} \) to find \(\{x_n\} \).

This direction is called the approximation approach because the given sequence of functions \(\{x_n^*\} \) are like “basis” elements for the subspace \(\mathcal{X} \), and we need to find a way to express a function \(f \) in terms of linear combinations of the elements of \(\{x_n^*\} \).

Both directions of constructions will be using the basic characterization

\[
VUP = \mathcal{P}.
\]

The first direction is to find the “left inverse” \(V \) from \(VUP = \mathcal{P} \). The second direction is to find the “right inverse” \(U \) from \(VUP = \mathcal{P} \). (Please see the details in the article).