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We consider two problems that arise from the intersection of algebraic geometry and

computer vision: first, a fundamental problem in computer vision is determining

whether or not a set of point correspondences can be produced by n projective

cameras. When n = 2, the answer to this question depends on the existence of

a real 3 × 3 matrix, called the fundamental matrix, satisfying a set of polynomial

constraints. We generalize some known results about the existence of a fundamental

matrix, based on certain assumptions about the calibration of the cameras. Second,

a set of n cameras defines a rational map φ from P3 into (P2)n. This map is an

instance of a more general class of rational maps from Pr−1 into (Ps−1)n defined by

matrices A1, . . . , An. We prove the existence of a universal Gröbner basis of the

ideal of this map, and provide a determinantal representation of the generators of

this ideal.
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Chapter 1

Introduction

Computer vision is a field centered around analyzing and extracting information

from image data, and mimicing the processes of biological vision (such as percep-

tion) with artificial systems. [8] Solving problems in computer vision requires tech-

niques from many disciplies, including computer science, physics, neuroscience, and

mathematics. The intersection of computer vision and mathematics is concerned

with understanding the geometry of images and cameras, and the relationship be-

tween the two. These relationships can often be stated as systems of polynomial

equations, so methods in algebraic geometry end up being very useful in attacking

these problems.

1.1 Partially Calibrated Epipolar Matrices

The first step in framing computer vision problems in a mathematical context is

to think of a camera as a matrix. When a camera takes a picture, it produces a
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two-dimensional image of a three-dimensional object, so we can think of the camera

as being a map from R3 to R2. Moreover, the mapping is a projection from R3 to

R2, so a camera can be thought of as a linear map from R3 to R2. In practice, it

turns out that the natural environment for these objects is the projective space, so

a camera can be thought of as a linear map from three-dimensional projective space

P3, to two-dimensional projective space P2. Since the camera is a linear map, we

can then associate to it a matrix P , which encodes the relevant characteristics of

the camera, such as the position of its center, the aspect ratio of the image points,

and the focal length of the camera. These characteristics determine the calibration

information of the camera.

One class of problems in computer vision is to understand the relationship between

the image and the characteristics of the camera that has taken the image. Whenever

we look at a picture, we can deduce information about the camera that took it, by

looking at the perspective, relative position of objects in the picture, and so on.

More generally, given multiple images, taken by multiple cameras, we would like to

determine the calibration information of the cameras that took the images.

We consider the case of two images being taken by two cameras in Figure 1.1. Each

world point Xi projects down to two image points, xi in the first image and yi in the

second image. In this case, corresponding pairs of image points (xi, yi) must satisfy

a set of polynomial constraints called epipolar constraints. These constraints take

the form of a real 3 × 3 matrix, called an epipolar matrix. [8]
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•
Xi

•
xi •

yi

Figure 1.1: A world point Xi and the corresponding pair of image points (xi, yi)
taken by two cameras.

A slight variation of the problem stated above is determining whether, given a set

of corresponding image points, an epipolar matrix exists such that the image points

satisfy the corresponding epipolar constraints. For a given set of corresponding

image points {(x1, y1), . . . , (xn, yn)}, the epipolar constraints translate to a set of

polynomial equations in the entries of a 3 × 3 matrix. Therefore, the question

of certifying the existence of an epipolar matrix boils down to the existence of a

nontrivial real solution to all of those polynomial equations.

What is already known about this problem can be divided into two broad cases: first,

the uncalibrated case, which assumes we know nothing about the calibration of the

two cameras, and second, the totally calibrated case, in which we know everything

about the calibration of the two cameras. These results are presented in [1]. One
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area of our research considers an intermediate case, in which we know the calibration

information about one camera, but not the other.

1.2 The Multiview Ideal

In the same way that we can think of a camera as a linear map, a set of n cameras

can be thought of as a single map, from P3 to n copies of P2. The image of this map,

called the multiview variety, are the solutions to a set of polynomial equations called

the multiview ideal. As shown in [2], a great deal is known about the structure of this

ideal, but it is a specific instance of a more general construction. Since the cameras

that produce the multiview variety are defined as 3 × 4 matrices, we can consider

what happens when we let the dimensions of the matrices vary. More specifically, a

set of n s × r matrices define a map from Pr−1 to n copies of Ps−1. While we lose

the connection to computer vision in this case, the points in the image of this map

still satisfy polynomial constraints. The second area of our research examines the

structure of the multiview ideal in this more general case.

1.3 Results

A paper by Agarwal, Lee, Sturmfels, and Thomas [1] relates the existence of an

epipolar matrix, in both the calibrated and uncalibrated case, to the rank of a

linear map Z defined by the image points {(x1, y1), . . . , (xn, yn)}. We attempt to
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extend these results to the partially calibrated case, where the calibration of only

one camera is known. From the original map Z we define a family of linear maps

ZK parametrized by the possible calibrations of the camera whose calibration was

unknown. The calibration information of a camera can be expressed as an upper

triangular matrix, defined up to scale. Therefore, the calibration matrix can then

be considered an element of P4, and we discovered that the set of all such possible

calibrations is a subset of P4 whose Zariski closure is the entirety of P4. Intuitively,

this means that the case of one camera being calibrated is very close to the case

of both cameras being completely calibrated, since most random upper triangular

matrices will result in a valid calibration.

Another paper, by Aholt, Sturmfels, and Thomas [2], determined that a universal

Gröbner basis of the multiview ideal was given by the maximal minors of a particular

set of matrices, defined by the cameras A1, . . . , An. This was done by embedding

the map defined by the camera matrices into a diagonal map from P3 to (P3)n.

Using results from [3], Aholt, Sturmfels and Thomas are able to characterize the

initial ideal of the ideal given by the diagonal map, which also gives a determinantal

description of the initial ideal of the multiview ideal. In general, we consider a

rational map from Pr−1 to (Ps−1)n defined by r × s matrices A1, . . . , An of rank n.

A similar set of minors turns out to give a universal Gröbner basis for the multiview

ideal in this case, as well. The same diagonal embedding can be used to give a

determinatal representation of the generators of the multiview ideal. Finally, we
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compute the multigraded Hilbert function of the initial ideal of the multiview ideal

certain cases.

1.4 Outline

The outline of this paper is as follows: Chapter 2 provides a overview of algebraic

geometry, describing basic properties of ideals, Gröbner bases, and varieties. Chap-

ter 3 is a description of the fundamental algebraic objects in computer vision, the

projective camera and the epipolar matrix. We describe the connection between the

two objects and include a derivation of the epipolar constraints that provide the

motivation for the next chapter. In Chapter 4, we generalize the criteria for certify-

ing the existence of an epipolar matrix to the case where the cameras are partially

calibrated. In Chapter 5, we describe the structure of the generalized multiview

ideal and its initial ideal. We prove that the maximal minors of a particular set of

matrices is a universal Gröbner basis for the multiview ideal. We also compute, for

the class of these rational maps from Pr−1 into (P1)n, the multigraded Hilbert func-

tion of the initial ideal with respect to a Zn-grading. In Chapter 6, we summarize

our results and provide possible directions for further research.
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Chapter 2

Algebraic Geometry

This chapter provides a brief description of the basic objects in algebraic geometry;

this material is covered in more detail, e.g., in [4].

2.1 Polynomial Rings and Ideals

The primary algebraic objects of study in the field of computer vision are ideals of

polynomial rings k[x1, . . . , xn], where k is an algebraically closed field (typically C).

Definition 2.1. An ideal I of a commutative ring R is a subset of R such that for

all a, b ∈ I and r ∈ R, a+ b ∈ I and r a ∈ I.

Example 2.1. Given any commutative ring R, the set {0} and the whole ring R

are both ideals. An ideal I that is neither is called a proper ideal.

Example 2.2. Let F be a field, and I an ideal of F with a nonzero element a. Then

a−1 a = 1 ∈ I, and b · 1 ∈ I for all b ∈ F . This shows that I = F .
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Example 2.3. Let R = Z, and I the set of all even integers. Then I is an ideal:

given a, b ∈ I, a+ b is even, and na is even for all integers n ∈ Z. The set of all odd

integers, however, is not an ideal — 3 and 5 are odd, but their sum 8 is not.

Example 2.4. A common construction is to define an ideal in terms of a generating

set. Given a subset S ⊆ R, the ideal generated by S is the set

〈S〉 :=

{
n∑
i=1

ri ai : n ∈ N, ri ∈ R, ai ∈ S

}
.

We check that this is an ideal:

(1) two elements of 〈S〉 are of the form

n∑
i=1

ri ai and
m∑
i=1

ri bi

which is still a sum of the form

n+m∑
i=1

ri ai

and is therefore in 〈S〉.

(2) given any r ∈ R,

r

[
n∑
i=1

ri ai

]
=

n∑
i=1

rri ai

is an element of 〈S〉.
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When S = {a1, . . . , an}, then we write

〈a1, . . . , an〉 = {r1 a1 + . . . + rn an : ri ∈ R}

to denote the ideal generated by S.

Example 2.5. Given two ideals I and J of R, their sum

I + J := {a+ b : a ∈ I, b ∈ J},

their product

IJ :

{
n∑
i=1

ai bi : i ∈ N, ai ∈ I, bI ∈ J

}
,

and their intersection I ∩ J are all ideals of R.

In this thesis we will concern ourselves with some particular classes of ideals:

Definition 2.2. A proper ideal I is a prime ideal if for any product ab ∈ I, either

a ∈ I or b ∈ I.

Example 2.6. In Z, the ideal 〈p〉 is a prime ideal if and only if |p| is a prime

number: for any product of integers mn, 〈p〉 is prime if and only if p divides m or

n; in particular, writing the prime factorization of p as

p = p1 . . . pk,

we see that if 〈p〉 is prime, p divides one of the primes pi in its prime factorization.

Then either p or −p is a prime number. Conversely, if |p| is a prime number, then
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given and product mn ∈ 〈p〉, |p|, and therefore p, must divide either m or n.

To contrast, 〈6〉 is not prime: 2 · 3 ∈ 〈6〉 but neither 2 nor 3 are in 〈6〉.

Definition 2.3. The radical of an ideal I is the set

rad I = {a : an ∈ I for some n ∈ N}.

It can be verified that rad I is an ideal that contains I. If I = rad I, then I is a

radical ideal.

Example 2.7. Let R = Z and I = 〈25〉. Then rad I = 〈5〉: an element of 〈5〉 is of

the form 5n for some n ∈ Z, so (5n)2 = 25n2 ∈ I. Conversely, any element in rad I

must be divisible by 25, and is therefore in 〈25〉.

Proposition 2.1. Let I be a prime ideal of R. Then I is a radical ideal: given

a ∈ rad I, there exists some n ∈ N such that an ∈ I. But since I is prime, this

shows that a ∈ I, so rad I = I.

A particularly important structural characteristic of commutative rings is given by

its ideal structure:

Definition 2.4. An ideal I of R is finitely generated if I = 〈a1, . . . , an〉 for some

ai ∈ R.

Definition 2.5. A ring R is Noetherian if every ideal I of R is finitely generated.

By appealing to Zorn’s lemma, one can prove the following properties of Noetherian

rings:
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Proposition 2.2. A ring R is Noetherian if and only if the ideals in R satisfy the

ascending chain condition, i.e., for any chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · · ⊆ In ⊆ In+1 ⊆ . . .

in R, for some N ∈ N, In = In+1 for all n ≥ N .

Theorem 2.3 (Hilbert’s Basis Theorem). If a ring R is Noetherian, then the poly-

nomial ring R[x] is Noetherian. In particular, R[x1, . . . xn] is Noetherian.

In practice, this allows us to define any ideal I ⊆ C[x1, . . . xn] in terms of a finite

generating set {f1, . . . , fn}. Note that an ideal I can be defined by more than one

generating set:

Example 2.8. Let R = C[x, y] and I = 〈x, y〉. Then it can be checked that

I = 〈x+ y, x− y〉 as well.

Given an ideal I of a polynomial ring C[x1, . . . , xn], it is sometimes necessary to

work with a generating set with more structure. To understand this structure we

must endow our polynomial ring with some additional structure.

2.2 Monomial Ideals and Gröbner Bases

We begin by defining a monomial term order in a polynomial ring:

Definition 2.6. A monomial in C[x1, . . . , xn] is a polynomial of the form xa =

xa11 . . . xann where a = (a1, . . . , an) ∈ Zn≥0.
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Definition 2.7. A monomial ideal I is an ideal that is generated by monomials;

i.e.

I = 〈xα1 , . . . , xαm〉

for some monomials xαj . A term order on C[x1, . . . , xn] is a total ordering � on

the monomials of C[x1, . . . , xn] satisfying the following properties:

(1) if xα � xβ, and xγ is any monomial, then xα · xγ � xβ · xγ.

(2) � is a well-ordering on the set of all monomials, i.e., any set of monomials has

a smallest element with respect to �.

Here are a few typical examples of term orders:

Example 2.9. In C[x], the only term order is given by 1 ≺ x ≺ x2 ≺ x3 ≺ . . . .

Example 2.10. The lexicographic or dictionary term order�lex on C[x1, . . . , xn]

is given by setting x1 �lex x2 �lex · · · �lex xn, and then defining xα �lex xβ if and

only if the leftmost nonzero element of α− β is positive. With respect to this term

order, in C[x, y, z], x �lex y �lex z, x3 �lex xyz �lex z5.

Example 2.11. The graded lex order �grlex is defined as follows: given α ∈ Zn≥0,

define

|α| =
n∑
i=1

αi.
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We say that xα �grlex xβ if and only if |α| > |β|, or |α| = |β| and xα �lex xβ. With

respect to this term order, z5 �grlex x3 �grlex xyz.

Example 2.12. The graded reverse lex order �grevlex is defined as follows:

xα �grevlex xβ if and only if |α| > |β| or |α| = |β| and the rightmost nonzero entry

of α−β is negative. With respect to this term order, z5 �grevlex�grevlex xyz �grevlex

xz2.

By defining a term order on C[x1, . . . , xn], we can extend the notion of the degree

of univariate polynomial f(x) to the multivariate case:

Definition 2.8. Let � be a term order on C[x1, . . . , xn]. Let

f =
m∑
ai=1

ci x
ai

where ai ∈ Zn≥0. Let xa = max� {xai : i = 1, . . . , m}. Then a is the multidegree

of f with respect to �, denoted by multideg(f). With this notation, the leading

coefficient of f is the coefficient ca of the xa term in f , the leading monomial

of f is xa, and the leading term of f is ca xa.

Example 2.13. Let � be the lexicographic term order on C[x, y, z] with x � y � z,

and let

f(x, y, z) = 2x3 + 3x2y + 4xy2 + 5xyz.

Then multideg(f) = (3, 0, 0), the leading coefficient of f is 2, and the leading term

of f is 2x3.
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Given an ideal I of a polynomial ring C[x1, . . . , xn], an important object of study

is the set of leading terms of polynomials in I:

Definition 2.9. Fix a term order � on C[x1, . . . , xn]. The initial ideal of I with

respect to �, denoted by in�(I), is the ideal

in (I) := 〈xα : xα is the leading term of some f ∈ I〉.

Note that the initial ideal of I is dependent on the term order on C[x1, . . . , xn], since

the leading terms of polynomials in I depends on the given term order. Therefore,

we must specify that the initial ideal of I is the initial ideal with respect to a term

order �.

It turns out that the initial ideal gives us the appropriate structure to define a

particular generating set of I: [4]

Definition 2.10. Let I be an ideal of C[x1, . . . , xn], with a term order �. A

generating set G = {g1, . . . , gs} of I is a Gröbner basis of I with respect to the

term order � if

in�(I) = 〈xα : xα is a leading term of gi for some i〉.

Note that, like the definition of an initial ideal, a set G is a Gröbner basis of an ideal

I with respect to a particular term order. However, it is possible for an ideal I to

have multiple Gröbner bases with respect to the same term order. This motivates

the following specialization of the above definition:
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Definition 2.11. A reduced Gröbner basis for a polynomial ideal I is a Gröbner

basis G for I such that

(a) the leading coefficient of each g ∈ G is 1,

(b) for all g ∈ G, no monomial of g lies in 〈xα : xα is a leading term of some f ∈

G \ {g}〉.

Reduced Gröbner bases enjoy a number of nice properties:

Proposition 2.4. Let I be a nonempty ideal in C[x1, . . . , xn]. Then for a given

monomial order �, I has a unique reduced Gröbner basis.

Proposition 2.5. Let I be a nonempty ideal in C[x1, . . . , xn]. Let G = {G�}� be

the collection of all reduced Gröbner bases, where � ranges over all possible term

orders of C[x1, . . . , xn]. Then G is a finite set.

This second result is noteworthy because when n ≥ 2, there are infinitely many

possible term orders on C[x1, . . . , xn], but across all of these term orders, there are

only finitely many possible reduced Gröbner bases. This fact motivates the following

definition:

Definition 2.12. Let I be a nonempty polynomial ideal, and let G1, . . . , Gk be the

collection of all reduced Gröbner bases of I. Then

G =
k⋃
i=1

Gi

is a universal Gröbner basis of I.
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The universal Gröbner basis of an ideal has an equivalent definition that is suggested

by its name:

Definition 2.13. A subset G of a nonempty polynomial ideal I is a universal

Gröbner basis of I if it is a Gröbner basis of I with respect to every term order

on C[x1, . . . , xn].

2.3 Affine Varieties

The fundamental geometric objects of interest are particular subsets of Cn called

affine varieties. These are subsets of affine space:

Definition 2.14. Let n be a positive integer. Then the n-dimensional affine

space is the set

Cn = {(a1, . . . , an) : ai ∈ C}.

Affine varieties are subsets of Cn that are defined by polynomials:

Definition 2.15. Let f1, . . . , fs be polynomials in C[x1, . . . , xn]. The affine va-

riety defined by f1, . . . , fs is the set

V = {a ∈ Cn : f1(a) = . . . = fs(a) = 0}.

This set is denoted by V(f1, . . . , fs).
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Example 2.14. The set V = {(a, b) ∈ C2 : a = 0} is the variety defined by the

polynomial f(x, y) = x. In the notation above, V = V(x).

Example 2.15. As a generalization of the above example, given a point a =

(a1, . . . , an) ∈ Cn, the set {(a1, . . . , an)} = V(x1 − a1, x2 − a2, . . . , xn − an).

Example 2.16. The set V = {(x, y) ∈ C2 : y − x2 = 0} is a variety defined by

the polynomial f(x, y) = y − x2; in R2 the subset V is a parabola defined by the

equation y = x2.

Sometimes, we would like to define an affine variety in terms of an ideal:

Definition 2.16. The affine variety of an ideal I ⊆ C[x1, . . . , xn] is the set

V(I) = {a ∈ Cn : f(a) = 0 for all f ∈ I}.

Note that if a ∈ Cn, and f1, . . . , fs are polynomials in C[x1, . . . , xn] such that

fi(a) = 0 for all i, then h1 f1 + . . . + hs fs is a polynomial that vanishes at a for all

polynomials hi. This allows us to interchange the variety of an ideal and the variety

of its generating set:

Lemma 2.6. Let I = 〈f1, . . . , fs〉. Then V(I) = V(f1, . . . , fs).

Proof. If a ∈ V(I), then every polynomial in I vanishes at a; in particular, fi

vanishes at a for each i, so a ∈ V(f1, . . . , fs). Conversely, if a ∈ V(f1, . . . , fs), and

every polynomial g ∈ I is of the form
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g = h1 f1 + . . . + hs fs,

then g vanishes at a, which shows that a ∈ V(I).

This lemma is useful in proving the following properties of varieties:

Lemma 2.7. Let V = V(f1, . . . , fl) and W = V(g1, . . . , gm) be affine varieties.

Then V ∩W and V ∪W are also affine varieties.

The foundation of algebraic geometry is the correspondence between these geometric

structure of Cn and the algebraic structure of the polynomial ring C[x1, . . . , xn]. In

the same way that a variety is defined in terms of an ideal, an ideal can be defined

in terms of a variety:

Definition 2.17. Let S be a subset of Cn. Then the ideal defined by S is the set

I(S) = {f ∈ C[x1, . . . , xn] : f(a) = 0 for all a ∈ S}.

It is clear that I(S) is an ideal: given f, g ∈ I(S) and h ∈ C[x1, . . . , xn], f + g and

hf will vanish on S as well.

Example 2.17. Let S = {(a1, . . . , an)} ⊆ Cn. Then I(S) = 〈x1−a1, . . . , xn−an〉.

Note that in this case, S is a variety: in particular, S = V(I), where I = 〈x1 −

a1, . . . , xn−an〉. With this notation, we have that I(V(I)) = I, which suggests that

this is true in general. However, this isn’t the case:

Example 2.18. Let S = {0} ⊆ C. Then S = V(x2), but I(S) = 〈x〉.
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It is however possible to say the following about the relationship between the oper-

ations V and I:

Proposition 2.8. For any ideal I ⊆ C[x1, . . . xn], I ⊆ I(V(I)).

Proof. Let f ∈ I. Then f vanishes on every point in V(I), so f ∈ I(V(I)).

Another important property relating V and I is reverse inclusion:

Proposition 2.9.

(1) Let I ⊆ J be two ideals in C[x1, . . . , xn]. Then V(J) ⊆ V(I).

(2) Let V ⊂ W be two varieties in Cn. Then I(W ) ⊆ I(V ).

Proof.

(1) If a is a point in V(J), then every polynomial in J will vanish on a; in partic-

ular, every polynomial in I will vanish on a, so a ∈ V(I).

(2) Every polynomial that vanishes on W will vanish on V , so I(W ) ⊆ I(V ).

Based on this information, it is clear that there is some sort of correspondence

between affine varieties in Cn and ideals in C[x1, . . . , xn]. The nature of this corre-

spondence is laid out in Hilbert’s Nullstellensatz:
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Theorem 2.10 (Hilbert’s Nullstellensatz). Let I be an ideal of C[x1, . . . , xn]. Then

I(V(I)) = rad I; in particular, there is a one-to-one correspondence

{affine varieties of Cn} ←→ {radical ideals of C[x1, . . . , xn]}

given by the operations I and V.

As a consequence of the Nullstellensatz, geometric information about a variety V

can be encoded as algebraic information about an ideal I, and vice versa: one such

example follows from a class of varieties called irreducible varieties:

Definition 2.18. A variety V is called irreducible if V cannot be written as a

union V = V1 ∪ V2 where ∅ ( Vi ( V .

Theorem 2.11. A variety V is irreducible if and only if I(V ) is a prime ideal.

2.4 Projective Varieties

The results in the previous section illustrate the correspondence between ideals of

C[x1, . . . , xn] and subsets in Cn. Similar results can be obtained when considering

a different ambient space from Cn, called projective space. Before defining complex

projective space, we first consider its real counterpart, the real projective space:

Definition 2.19. The real projective plane, denoted by P2(R), is the set of all

lines in R3 that pass through the origin (0, 0, 0).
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The elements of P2(R) are lines, but a more useful characterization of these elements

comes from the following idea: we let H = {(x, y, 1) ∈ R3}, and H∞ = {(x, y, 0) ∈

R3}. A line L in P2(R) will either pass through H in exactly one point, or will be

contained in H∞. In each case, we can associate L to a point in R3 in a particular

way:

(a) if L intersects H, then it intersects H in a unique point (a, b, 1). We can

identify (a, b, 1) with the point (a, b) in R2. Conversely, given any (a, b) ∈ R2,

there exists a unique line L in R3 that passes through the origin and (a, b, 1);

this gives us a bijective correspondence

{lines in P2(R) that intersect H} ←→ R2.

(b) if L ⊆ H∞, then L is uniquely determined the origin and another point (a, b, 0)

on L where a and b are not both 0. In particular, if L intersects the line y = 1

in H∞, then it does so at exactly one point (a, 1, 0). Conversely, exactly

one line L in H∞ that passes through the origin will pass through the point

(a, 1, 0). We can identify these points with the real line R. This leaves out one

line in P2(R) in H∞: the line that passes through the origin and (1, 0, 0). All

together, this gives us a bijective correspondence

{lines in P2(R) contained in H∞} ←→ R ∪ {(1, 0, 0)}.

Therefore, we can more concretely represent the elements of P2(R) as follows:
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P2(R) = {(a, b, 1) ∈ R3} ∪ {(a, 1, 0) ∈ R3} ∪ {(1, 0, 0)} ≡ R2 ∪ R ∪ {(1, 0, 0)}

The points in R ∪ {(1, 0, 0)} are often called the points at infinity, which alludes to

the geometric realization of the real projective plane. However, our ultimate goal is

to define complex projective space, so we must consider another, purely algebraic

construction of the projective plane:

Definition 2.20. Define an equivalence relation ∼ on R3 \ {(0, 0, 0)} as follows:

(a, b, c) ∼ (a′, b′, c′) ⇐⇒ (λ a, λ b, λ c) = (a′, b′, c′) for some λ ∈ R \ {0}.

Define the real projective plane P2(R) to be the set of all equivalence classes

(R3 \{(0, 0, 0)})/ ∼. The elements of P2(R) are called homogeneous coordinates

and are denoted by [a : b : c] where (a, b, c) 6= (0, 0, 0).

Naturally, we must check that these two definitions produce the same set:

Proposition 2.12. There exists a bijective correspondence

{lines in R3 that pass through the origin} ←→ {[a : b : c] : (a, b, c) 6= (0, 0, 0)}.

Proof. We correspond to each line in R3 that passes through the origin a point in

(a, b, c) ∈ R3, where (a, b, c) 6= (0, 0, 0). This gives a map

{lines in R3 that pass through the origin} −→ {[a : b : c] : (a, b, c) 6= (0, 0, 0)}

(a, b, c) 7−→ [a : b : c]

The inverse map is defined as follows: given a homogeneous coordinate [a : b : c], if
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c 6= 0, map to the line corresponding to (a
c
, b
c
, 1); otherwise, if c = 0 and b 6= 0, map

to the line corresponding to (a
b
, 1, 0), and if c, b = 0, map to the line corresponding

to (1, 0, 0). Under the equivalence relation ∼, this is a well-defined inverse, which

exhibits the bijective correspondence.

Note that the algebraic construction of P2(R) is readily generalizable to both dif-

ferent fields and different dimensions. We will mimic this construction to define the

complex projective space that will serve as the ambient space for the results in this

thesis:

Definition 2.21. Let n ≥ 1. Define an equivalence relation ∼ on the set Cn+1 \{0}

by setting

(a0, . . . , an) ∼ (b0, . . . , bn) ⇐⇒ (λ a0, . . . , λ an) = (b0, . . . , bn) for some λ ∈ C \ {0}.

The set (Cn+1 \ {0})/ ∼ of equivalence classes under ∼ is the n-dimensional

projective space, denoted by Pn.

Example 2.19. Let n ≥ 1, and let U0 = {[a0 : a1 : . . . : an] ∈ Pn : a0 6= 0}. Note

that given [a0 : a1 : . . . : an] ∈ U0,

[a0 : a1 : . . . : an] ∼
[
1 :

a1
a0

: . . . :
an
a0

]
,

so we can write U0 = {[1 : a1 : . . . : an] ∈ Pn}. Then Pn can be written as a

disjoint union

Pn = U0 ∪ {[0 : a1 : . . . : an] ∈ Pn},



24

where the elements are in U0 are in bijective correspondence with the elements of

n-dimensional affine space Cn, and the elements of {[0 : a1 : . . . : an] ∈ Pn} are in

bijective correspondence with the elements of Pn−1; then we can write

Pn = Cn ∪ Pn−1.

Note that we can mimic this construction with

Ui = {[a0 : . . . : ai−1 : 1 : ai+1 : . . . : an] ∈ Pn}

for 0 ≤ i ≤ n, and

Pn = U0 ∪ U1 ∪ . . . ∪ Un.

This shows that Pn can be thought of as the union of n + 1 n-dimensional affine

spaces.

We would like to define a projective analog to the affine varieties in the previous

section, but we cannot define them in terms of polynomials in exactly the same way:

for a general polynomial f ∈ C[x0, . . . , xn] and a general element [a0 : a1 : . . . :

an] ∈ Pn,

f(a0, . . . , an) 6= f(λ a0, . . . , λ an)

for λ ∈ C. Then a general polynomial f will not be well-defined as a function on

Pn. To make sense of how a projective variety should be defined, we require that

our polynomials are homogeneous:
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Definition 2.22. Write a polynomial f ∈ C[x0, . . . , xn] as

f(x0, . . . , xn) =
∑
α

cα xα.

Then f is homogeneous of degree d if |α| = d for all monomials xα in f .

Note that given a homogeneous polynomial f of degree d,

f(λ a0, . . . , λ an) = λd f(a0, . . . , an)

which shows that while f is still not a well-defined function on Pn, f(a0, . . . , an) = 0

for every representation of the homogeneous coordinate [a0 : . . . : an]. Therefore,

it makes sense to define a variety in terms of these homogeneous polynomials:

Definition 2.23. Let f1, . . . , fm ∈ C[x0, . . . , xn] be homogeneous polynomials.

Then the projective variety V defined by f1, . . . fm is the set

V(f1, . . . , fm) = {[a0 : . . . : an] ∈ Pn : f1(a0, . . . , an) = . . . = fm(a0, . . . , an) = 0}.

Given an ideal I of C[x0, . . . , xn] generated by homogeneous polynomials, the pro-

jective variety V defined by I is defined as the set

V(I) = {[a0 : . . . : an] ∈ Pn : f(a0, . . . , an) = 0 for all f ∈ I}.

Definition 2.24. Given a projective variety V in Pn, the ideal of V is

I(V ) = 〈f ∈ C[x0, . . . , xn] : f(a0, . . . , an) = 0 for all [a0 : . . . : an] ∈ V 〉.

An important invariant of both projective and affine varieties is the degree:
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Definition 2.25. The degree of a projective variety V ⊆ Pn is the number of

points in the intersection of V with a generic linear subspace L whose codimension

is the dimension of V .

The following is a useful result regarding the degree of a projective variety:

Lemma 2.13. If V1 and V2 are two projective varieties in Pn of dimension d and

n− d, respectively, then V1 ∩ V2 6= ∅.

2.5 The Hilbert Function

Finally, we define the Hilbert function, an important function associated to a ho-

mogeneous ideal of a polynomial ring.

Definition 2.26. Let R be a commutative ring and G an abelian semigroup. R is

a G-graded ring if

R =
⊕
g∈G

Rg

where for all g, h ∈ G, r ∈ Rg and s ∈ Rh, rs ∈ Rgh.

Example 2.20. Let R = C[x] and G = N. Then the degree gives an N-grading on

R:

C[x] = R0 ⊕ R1 ⊕ . . .

where Ri is the set of all polynomials in C[x] with degree i.
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Example 2.21. The polynomial ring C[xij : i ∈ [r], j ∈ [n]] admits an Nn-grading

in the following way: let u = (u1, . . . , un) ∈ Nn, α = (αij), and define

Ru =

{
xα :

r∑
i=1

αij = uj for each j

}
.

Then

C[xij : i ∈ [r], j ∈ [n]] =
⊕
u∈Nn

Ru.

The Hilbert function is defined in terms of a homogeneous ideal of a graded poly-

nomial ring:

Definition 2.27. Let C[x1, . . . , xn] be a G-graded polynomial ring, and I a homo-

geneous ideal. Then the Hilbert function of this ideal is a function H : G −→ N

where H(g) counts the number of elements of Rg not in I ( equivalently, the number

of elements of Rg that do not reduce to 0 in the quotient ring C[x1, . . . , xn]/I).
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Chapter 3

Computer Vision

3.1 The Camera Model

The description of the camera model and epipolar geometry are taken from Hartley

and Zisserman’s book on computer vision [8].

The process of image formation is one of constructing a two-dimensional represen-

tation of a three-dimensional space. It is therefore natural to think of a camera as a

projection from three-dimensional space onto a two-dimensional image. The camera

model is formed by central projection, in which a ray is drawn from a 3D world point

through a fixed point in space, called the center of projection. This ray intersects

a fixed plane in space, called the image plane. The intersection of the ray with the

image plane represents the image of the world point. This model is in accord with

our intuitive model of a camera, in which a ray of light from a world point passes

through the lens of a camera and is captured as a single point on the image.
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Figure 3.1: A camera model formed by central projection. A world point X projects
down to an image point x in the image plane.

In this setting, world points will be represented by points in the projective space P3

of the form [x : y : z : 1], and image points by points in the projective plane P2

of the form [x : y : 1]. Central projection is therefore a projection map from P3 to

P2. We can realize a projective camera as a matrix as follows:

Example 3.1. Fix the center of projection to be the origin [0 : 0 : 0 : 1] in P3.

For a given x, y, z ∈ R, the world line {[x : y : z : t] : t ∈ R} in P3 projects down

to the image point [x : y : z] ∈ P2 under this mapping. This is in fact a linear map

P : P3 −→ P2 that can be represented by a real 3 × 4 matrix with block structure

P = [I3 |03], where I3 is the 3 × 3 identity matrix and 03 is the zero vector in R3.

We can verify this by observing that
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
1 0 0 0

0 1 0 0

0 0 1 0





x

y

z

t


=


x

y

z

 .

In general, the center of projection and other intrinsic features of the camera, like

the aspect ratio or skew, might change. But these changes can be expressed via a

linear transformation on the set of image coordinates:

Example 3.2. If we consider a more general 3 × 4 matrix

P =


1 0 px 0

0 1 py 0

0 0 1 0

 ,
where px, py ∈ R, then

P



x

y

z

t


=


x+ z px

y + z py

z

 ,

which has a natural interpretation as a projection map paired with a translation:

the first example assumes that the origin [0 : 0 : 0 : 1] is mapped to the origin in

the image plane; in general, it might be mapped to some other point of the form

[px : py : 1]. This corresponds to a projection and a translation
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

x

y

z

t


7−→


x+ z px

y + z py

z


which is a transformation given by the matrix P above.

Relaxing the conditions on other intrinsic properties of the camera give rise to similar

relaxations on the form of P . A general projective camera is defined as follows:

Definition 3.1. A projective camera P is a real 3 × 4 matrix of rank 3 of the

form P = [A | t], where A is an invertible 3 × 3 matrix and t ∈ R3, and P is defined

up to scale; i.e., we consider [A |v] and λ [A | t] to be the same for nonzero λ ∈ R.

A more useful characterization of the projective camera matrix is given in chapter

6 of Hartley and Zisserman [8]:

Proposition 3.1. A general projective camera P can be written as

P = K[R | t]

where R is a 3 × 3 rotation matrix and K is an invertible matrix that encodes the

calibration of the camera.
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3.2 Epipolar Constraints

One of the fundamental problems in computer vision is to understand the intrinsic

geometry of a system of n projective cameras. We are interested in the case where

n = 2: given two projective cameras P1 and P2, we wish to understand the intrinsic

geometry between P1 and P2, given a set of m pairs of image points taken by the

two cameras. More precisely, given m world points X1, . . . , Xm, let P1Xi = xi and

P2Xi = yi for each 1 ≤ i ≤ m, and consider the pairs (x1, y1), . . . , (xm, ym). It

turns out that for m ≥ 7, these pairs of image points give rise to a set of constraints

on the entries of P1 and P2 called epipolar constraints. These constraints are

derived from the setting illustrated in Figure 3.2. In the figure, X is a world point

whose images under P1 and P2 are x1 and x2, respectively. The centers of these

cameras are at C1 and C2. The epipolar plane π formed by x1 and x2 is the plane

formed by the lines passing through the points {X,x1,C1} and {X,x2,C2}. In this

setting we can define the following:

Definition 3.2. The baseline between two cameras P1 and P2 is the line between

their centers. The epipole is the point of intersection of the baseline with the image

plane. In Figure 3.2, the epipoles are e1 and e2 — note that these are the image of

C2 in the first view and C1 in the second, respectively.

Definition 3.3. An epipolar plane is a plane containing the baseline.

Definition 3.4. An epipolar line is the intersection of an epipolar plane with the



33

•
C1

•
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•X

•x1 •x2

π

Figure 3.2: The lines between a world point X and the camera centers C1 and C2

form an epipolar plane π.

image plane. These lines will define the correspondence between points on the image

plane.

From Figure 3.2, to each point x in one of the image planes, we can construct

an epipolar line in the second image by taking the line that passes through the

corresponding image point x′ and the epipole in the other image plane. This corre-

spondence is encoded in a real 3 × 3 matrix called the fundamental matrix, which

turns out to encode the geometry relating the two cameras. Hartley and Zisserman

outline a derivation of the fundmamental matrix in [8, Chapter 9]:

Let x be a point in the first image plane. The first camera center C1 and this point
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x form a ray that back-projects into the set of world points, points X that satisfy

the equation P1 X = x. The solutions to this equation are of the form

{P+
1 x + λC1 : λ ∈ R} ∪ {C1}

where P+
1 is the psuedo-inverse of P1 (so P1 P

+
1 = I). The images of the points

P+
1 x and C1 in the second image plane are P2 P

+
1 x and P2 C1, respectively. The

epipolar line l in the second image plane is the line joining these points; therefore,

l′ = (P2 C1) × (P2 P
+
1 x)

which, since P2 C1 is the epipole in the second image plane e2, we can rewrite as

l′ = [e2]× (P2 P
+
1 ) x,

and from this we obtain the fundamental matrix F :

Definition 3.5. Let P1 = K1[R1 | t1] and P2 = K1[R2 | t2] be two projective cam-

eras, and let e1 and e2 be the epipoles in the image planes of P1 and P2, respectively.

Then the fundamental matrix F of P1 and P2 is the matrix

F = [e2]× P2 P
+,

where for a given vector v = (v1, v2, v3) ∈ R3,

[v]× =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 ,
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and P+ is the psuedo-inverse of P1.

Since projective cameras are defined up to scale, the same applies to the funda-

mental matrix; we can think of it as an element of P8. For our purposes, there are

several results in [8, Chapter 9] which provide more useful characterizations of the

fundamental matrix:

Proposition 3.2. Let F be the set of all fundamental matrices in P8. Then F is

the set of all real 3 × 3 matrices of rank 2, up to scale.

Proposition 3.3. With the same notation as in Definition 3.5, F = K−T2 BK1,

where B is a real 3 × 3 matrix of rank 2 such that both of its nonzero singular

values are equal.

Example 3.3. Let P1 = [I3 |0] and P2 = [R2 | t2]. Then K2 = K1 = I3, and the

fundamental matrix is the matrix B, in the notation of Proposition 3.3. In this case,

the cameras P1 and P2 are said to be calibrated and the fundamental matrix F is

called an essential matrix, usually denoted by B.

3.3 The Set of Fundamental and Essential Matrices

We can think of a 3 × 3 matrix, defined up to scale, as an element of the projective

space P8. In particular, a fundamental matrix F can be thought of as an element of

P8. We can consider the set of fundamental matrices:
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Definition 3.6. The set of fundamental matrices in P8 is denoted by F .

By Proposition 3.2,

F = {F ∈ P8 : F has rank 2},

which is the difference of two projective varieties, or a quasi-projective variety: if

we consider P8 to be the set of all 3 × 3 matrices, defined up to scale, then

F = P8 \ {F ∈ P8 : F has rank 1}

where the latter set is the variety defined by the 2-minors of a 3 × 3 matrix.

Similarly, essential matrices can be thought of as real 3 × 3 matrices, defined up to

scale, and therefore as elements of P8. Let E be the set of all essential matrices in

P8. Then E ⊆ F . In fact, in [5], Demazure showed that E can be described as the

solution set of polynomial equations:

Proposition 3.4. Let E be the set of all essential matrices in P8. Then

E = {E ∈ P8 : 2E ET E − tr(E ET )E = 0, detE = 0}.

This is a projective variety in P8: let

X =


x0 x1 x2

x3 x4 x5

x6 x7 x8

 .



37

Then E is defined by the polynomials p1, . . . p10 ∈ C[x0, . . . x8], where
p1 p2 p3

p4 p5 p6

p7 p8 p9

 = 2X XT X − tr(X XT )X

and p10 = det X.
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Chapter 4

Partially Calibrated Epipolar Matrices

4.1 Motivation

A fundamental problem in computer vision is the following: given m world points

X1, X2, . . . , Xm andm pairs of corresponding image points {(x1, y1), . . . , (xm, ym)},

does there exist a pair of projective cameras P1, P2 such that P1 Xi = xi and

P2 Xi = yi for i = 1, 2, . . . , m? In Chapter 3, it was shown that the existence of

these cameras is equivalent to the existence of a real 3 × 3 matrix F , called the

fundamental matrix, satisfying the equations

yTi F xi = 0 (4.1)

for i = 1, 2, . . . , m. These equations are called the epipolar constraints. In [1],

Agarwal, Lee, Sturmfels and Thomas reframe these constraints in the context of

linear algebra: given the m pairs of point correspondences above, where xi = [xi1 :
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xi2 : 1]T and yi = [yi1 : yi2 : 1]T , define the matrix Z to be the m × 9 matrix

whose ith row is

yTi ⊗ xi = [yi1 xi1 : yi1 xi2 : yi1 : yi2 xi1 : yi2 xi2 : yi2 : xi1 : xi2 : 1].

Then Z defines a linear transformation on P8, which encodes the epipolar constraints

in the following way:

Lemma 4.1.

(a) there exists a fundamental matrix F if and only if kerZ ∩ F is nonempty.

(b) there exists an essential matrix E if and only if kerZ ∩ E is nonempty.

Proof. We represent a 3 × 3 matrix F as a column vector by concatenating the

rows and taking the transpose: F = [a11 : a12 : a13 : a21 : a22 : a23 : a31 : a32 :

a33]
T ∈ P8. Then the ith row of Z F is

(yTi ⊗ xi)F =
3∑
j=1

3∑
k=1

yij xik ajk

where we let yi3 = xi3 = 1. The corresponding epipolar constraint is

yTi F xi = [yi1 y12 1]


a11 a12 a13

a21 a22 a23

a31 a32 a33



xi1

xi2

1

 =
3∑
j=1

3∑
k=1

yij xik ajk,

which shows that Z F = 0 if and only if F satisfies each epipolar constraint yTi F xi =

0. Equivalently, a fundamental matrix F (or essential matrix E) exists if and only
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if kerZ ∩ F 6= ∅ (or kerZ ∩ E 6= ∅).

As a consequence of this observation, the problem of certifying the existence of a

fundamental matrix reduces to examining the intersection between the linear sub-

space kerZ and the quasi-projective variety F . Similarly, to determine whether an

essential matrix exists, we consider the intersection between kerZ and the projec-

tive variety E . Intuitively, the lower the rank of Z, the more likely it is that this

intersection is nonempty. The strategy presented in [1] is to condition on the rank

of Z:

Theorem 4.2. If rankZ ≤ 5, then a fundamental matrix F exists.

Theorem 4.3. If rankZ ≤ 4, then an essential matrix E exists.

4.2 Generalizations — Partially Calibrated Epipolar Matri-

ces

One way the difference between Theorem 4.2 and 4.3 can be interpreted is as a func-

tion of how much is known about the projective cameras — recall that an essential

matrix E represents a pair of projective cameras that are totally calibrated. It is

therefore natural to consider when a fundamental matrix where some of the calibra-

tion information is known. We will call these matrices partially calibrated epipolar
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matrices. In general, we assume that a pair of cameras is partially calibrated when

we know some information about the calibration of the cameras, but not complete

information. To precisely express what this means in terms of the corresponding

epipolar matrix, recall that a general fundamental matrix F admits a factorization

F = K−T1 BK2, (4.2)

where B is an essential matrix, and K1 and K2 are invertible upper triangular

matrices that encode information about the position and skew of each camera. When

we assume no knowledge about the calibration of the cameras, we can only assume

that the corresponding calibration matrices K1 and K2 are invertible and upper

triangular. When the cameras are both fully calibrated, we can assume that K1 and

K2 are both the identity matrix, which means that the position and skew of the

cameras are normalized.

Naturally, we can examine the case where K1 and K2 are not necessarily the identity

matrix, but we have information about their structure. There are a variety of

assumptions we can make about the structure of K1 and K2, but we will focus on

the case where one of K1 or K2 is the identity, and the other is an invertible upper

triangular matrix of the form
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K =


x 0 a

0 y b

0 0 1


This particular characterization is, in fact, a general characterization of partial cal-

ibration:

Theorem 4.4. Suppose F is a fundamental matrix. Then there exist an essential

matrix B and a calibration matrix K such that F = K−T B.

Proof. Let F be a fundamental matrix. Then

F = K−T1 BK2

where K1 and K2 are invertible upper triangular matrices, and B is an essential

matrix, so

B = [t]×R

for some vector t ∈ R3 and rotation matrix R. Then using the fact that

[t]×M = M−T [M−1 t]×

for any invertible matrix M ,

F = K−T1 BK2 = K−T1 [t]×(RK2) = K−T1 (RK2)
−T [(RK2)

−1 t]×.

The matrix (RK2)
−T admits a unique LQ decomposition (RK2)

−T = LQ where L
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is a lower triangular matrix with positive diagonal and Q is a rotation matrix. Then

letting U = L−T ,

K−T1 (RK2)
−T = K−T1 LQ = K−T1 U−TQ = (K1 U)−TQ,

so F = (K1 U)−T Q [(RK2)
−1 t]×. Since Q, and therefore, QT is invertible, there

exists some vector t′ ∈ R3 such that QT t′ = (RK2)
−1 t. Then

Q[(RK2)
−1 t]× = Q[QT t′]× = [t′]×Q,

so

F = (K1 U)−T [t′]×Q,

where K1 U is an invertible upper triangular matrix, and Q is a rotation matrix, so

[t′]×Q is an essential matrix. This shows that every fundamental matrix F can be

written as a partially calibrated matrix of the form K−T B, where K is an invertible

upper triangular matrix and B is an essential matrix.

Note that the matrix K1 U is not necessary a matrix of the form
x 0 a

0 y b

0 0 1

 .
In fact, a computation can show that this only happens if K1 and K2 are both

matrices of these form. Therefore, this is a natural generalization of an essential
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matrix.

4.3 A Diagonal Calibration Matrix

As an example, let F = K B where B is an essential matrix and K be a diagonal

matrix:

K =


a 0 0

0 b 0

0 0 1


where a, b 6= 0. The epipolar constraints require that

yTi F xi = [yi1 yi2 1]


a 0 0

0 b 0

0 0 1

 B xi = [ayi1 byi2 1]B xi = 0

for i = 1, 2, . . . , m. For each i, let ya,bi = [ayi1 : byi2 : 1] and define a new matrix

Za,b where the ith row is given by

(ya,bi )T ⊗ xi = [ayi1 xi1 : ayi1 xi2 : ayi1 : byi2 xi1 : byi2 xi2 : byi2 : xi1 : xi2 : 1].

We are able to rewrite the epipolar constraint in terms of this new matrix Za,b:

Lemma 4.5. A fundamental matrix F = K B, where K = diag(a, b, 1) and B is

essential, exists that satisfies the epipolar constraints given by Z if and only if an

essential matrix B exists that satisfies the epipolar constraints given by Za,b.
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Proof. Based on the computation above, F = K B, Z F = 0 if and only if Za,bB = 0,

so kerZ ∩ F is nonempty if and only if kerZa,b ∩ E is nonempty.

To understand the relationship between Z and Za,b, we write Z in terms of its

columns:

Z =


...

...
...

C1 C2 . . . C9

...
...

...

 .
This allows us to write Za,b in terms of the same columns:

Za,b =


...

...
...

...
...

...
...

...
...

aC1 aC2 aC3 bC4 bC5 bC6 C7 C8 C9

...
...

...
...

...
...

...
...

...


To compute the rank of Za,b, we wish to compute the minors of Za,b, which are in

fact characterized by the minors of Z in the following way:

Proposition 4.6. For k = 1, . . . , 9, a k-minor of Za,b will be a scalar multiple of

the determinant of the corresponding k-minor in Z.

Proof. In general, a k-minor of Za,b is formed by taking k colums of Za,b and removing

m − k rows. Each column of Za,b is a scalar multiple of the corresponding column

in Z, so the determinant of the minor will be a scalar multiple of the determinant

of the corresponding minor in Z.

Example 4.1. Consider a 6-minor of Za,b formed by taking the first six columns
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
...

...
...

...
...

...

aC1 aC2 aC3 bC4 bC5 bC6

...
...

...
...

...
...


and removing m− 6 rows. The determinant of this matrix is a3 b3A, where A is the

determinant of the corresponding 6-minor in Z (i.e., the 6-minor formed taking the

first six columns of Z and removing the same m− 6 rows).

Therefore, we know the following about rank Za,b:

Corollary 4.7. rankZa,b = rankZ.

Proof. Since a and b are nonzero, any given k-minor in Za,b will have zero de-

terminant if and only if the corresponding k-minor in Z (i.e., the one formed by

intersecting the same rows and columns as the ones used to form the k-minor in

Za,b) has zero determinant.

If rank Z = k, then there exists a k-minor of Z with zero determinant. The cor-

responding k-minor in Za,b will also have zero determinant, so rank Za,b ≥ k. Ad-

ditionally, all j-minors of Za,b, where j > k, will have nonzero determinant, since

the corresponding j-minors of Z will have nonzero determinant. Therefore, rank

Za,b = k = rank Z.

Now we can characterize when a fundamental matrix F = K B exists:

Theorem 4.8. A fundamental matrix of the form F = K B, where K is a diagonal

matrix and B is an essential matrix, exists with respect to Z if and only if an
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essential matrix B exists with respect to Z. In particular, when rankZ ≤ 4, such a

fundamental matrix F exists.

4.4 The Parameter Space

We now relax the constraints on the calibration matrix K to our original definition

of a partially calibrated epipolar matrix: let F = K B, where B is an essential

matrix and K is of the form

K =


a 0 0

0 b 0

c d 1

 ,
where a, b 6= 0. The epipolar constraints require that for i = 1, . . . , m,

yTi F xi = [yi1 : yi2 : 1]


a 0 0

0 b 0

c d 1

 B xi = [ayi1 + c : byi2 + d : 1]B xi = 0

so by letting

(yKi )T = [ayi1 + c : byi2 + d : 1],

the constraint above is equivalent to requiring that (yKi )T B xi = 0 for each i. Define

ZK to be the m × 9 matrix whose ith row is given by (yKi )T ⊗ xi. Then the columns

of ZK can be written in terms of the columns of Z:
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ZK =


...

...
...

...
...

...
...

aZ1 + cZ7 . . . bZ4 + dZ7 . . . Z7 Z8 Z9

...
...

...
...

...
...

...

 .
We take the same approach as in the previous section: let σ ⊆ [9], τ ⊆ [m], and let

MZ,σ,τ be the minor of Z formed by intersecting the columns in σ and the rows in

τ . Then in general,

MZK ,σ,τ =


...

...
...

...
...

...
...

... aCi + cCi+6
... bCj + dCj+3

... Ck
...

...
...

...
...

...
...

...


where i ∈ {1, 2, 3}, j ∈ {4, 5, 6}, and k ∈ {7, 8, 9}. Suppose |σ| = |τ | = n, where σ

contains e1 elements from {1, 2, 3}, e2 elements from {4, 5, 6}, and e3 elements from

{7, 8, 9} (so e1 + e2 + e3 = n). Note that detMZk,σ,τ is a homogeneous polynomial of

degree n − e3. Moreover, by the multilinearity of the determinant, the coefficients

of this polynomial are of the form detMZ,σ′,τ , where σ′ ranges over the possible

combinations of columns that can be formed from the columns in MZK ,σ,τ . This lets

us prove the following:

Proposition 4.9. rankZK ≤ rankZ.

Proof. The determinant of any k-minor MZK ,σ,τ can be thought of as a polynomial in

C[a, b, c, d] whose coefficients are the determinants of certain k-minors of Z. There-

fore, if all the k-minors of Z have zero determinant, so do all the k-minors of ZK ,
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so rank ZK ≤ rank Z.

Naturally, we would like to know when this inequality is strict, or whether the

inequality is actually an equality as in the previous section. To answer this question

we take an alternative approach: let

K ′ =



a

a

a

b

b

b

c d 1

c d 1

c d 1



.

K ′ is an invertible 9 × 9 matrix (since a, b, 1 6= 0) and ZK = Z K ′. Since K ′ is

invertible,

rank ZK = rank Z K = rank Z

and kerZK = ker(Z K ′). The condition in Lemma 4.1 is therefore equivalent to

checking

kerZK ∩ E = ker(Z K ′) ∩ E .
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A matrix B is in this intersection if and only if

(Z K ′)B = Z (K ′ (B)) = 0.

If we let K ′(E) = {K ′(E) : E ∈ E}, then this means we must check the intersection

kerZ ∩ K ′(E).

Lemma 4.10. For fixed values of a, b, c, d such that K ′ is invertible, K ′(E) is a

projective variety in P8.

Proof. Recall that E is a variety given by the equations
p0 p1 p2

p3 p4 p5

p6 p7 p8

 = 2E ET E − tr(E ET )E

and p9 = det(E). For i = 0, . . . , 9, Let qi(x) = pi((K
′)−1 x), where x = {x1, x2, . . . , x9}.

Then qi (K
′E) = pi (E), so the qi vanish on K ′E if and only if the pi vanish on E,

or equivalently, if and only if E ∈ E . This shows that K ′(E) = V(q0, . . . , q9).

For fixed values of a, b, c, d, it makes sense to think of K ′(E) as a variety in P8,

but in reality we are considering a family of projective varieties K ′(E) that are

parametrized by lower triangular matrices
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K =



a

a

a

b

b

b

c d e

c d e

c d e



,

which can be thought of as points K = [a : b : c : d : e] ∈ P4. In this case, we are

interested in the parameter space

C = {(K,E) : K ′ ∈ P4, E ∈ K ′(E)}.

We are therefore interested in the existence of a pair (K,E) ∈ P4 × P8, where K

is defined by a matrix of the form above and E ∈ K(E). In particular, we are

interested in determining whether the set

K = C \ {(K,E) : K ∈ P4, abe = 0, E ∈ K ′(E)}

is empty. To answer this question we use the following property of parameter spaces

from [7]:

Proposition 4.11. Suppose X ⊆ Pn is a projective variety, and {Vb} is a family of
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projective varieties in Pn parametrized by b ∈ Pm. Then

{b ∈ B : X ∩ Vb 6= ∅}

is a subvariety of Pm.

In particular, the set

{K ∈ P4 : kerZ ∩ K(E) 6= ∅}

is a subvariety of P4, and we are interested in finding an element in the quasi-

projective variety

B = {K ∈ P4 : kerZ ∩ K(E) 6= ∅} \ {K ∈ P4 : ker Z ∩ K(E) 6= ∅, abe = 0},

which corresponds to the set of invertible upper triangular matrices K. A compu-

tation in Macaulay2 [6] reveals the following:

Proposition 4.12. For generic matrices Z of rank 5, the Zariski closure of B is

P4.

The computation involves taking the ideal generated by kerZ, for a generic Z of

rank 5, and the equations defining the ideal I(K(E)), and computing the elimination

ideal in C[a, b, c, d, e]. Therefore, we can conclude the following:

Theorem 4.13. For generic matrices Z, when rankZ ≤ 5, a fundamental matrix

of the form F = K B, where B is an essential matrix and
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K =


a 0 0

0 b 0

c d 1

 ,
exists with respect to Z.
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Chapter 5

The Multiview Ideal in Pr

5.1 Motivation

In this chapter, we generalize results regarding the multiview variety. Let A1, . . . , An

be a system of projective cameras. These can be thought of as real 3 × 4 matrices

of rank 3. Given these matrices, we can consider the rational map

φ : P3 −→ P2 × P2 × . . . × P2

x 7−→ (A1x, A2x, . . . , Anx)
(5.1)

Let VA = φ(P3) be the closure of the image of φ and JA = I(VA) its ideal in the

polynomial ring C[xi, yi, zi : i ∈ [n]]. VA and JA are called the multiview variety

and multiview ideal, respectively. In [2], Aholt, Sturmfels and Thomas characterize

the generators and the Hilbert function of the initial ideal in�JA, with respect to

the term order
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x1 � x2 � . . . � xn � y1 � . . . � yn � z1 � . . . � zn

for sufficiently generic cameras A1, . . . , An. Their method was to express VA as the

diagonal embedding of P3 into (P3)n, obtain a set of generators for in�JA via elimi-

nation, and prove that the resulting generators have a determinantal representation.

We will generalize these results to the class of rational maps

φ : Pr−1 −→ Ps−1 × Ps−1 × . . . × Ps−1

x 7−→ (A1x, A2x, . . . , Anx)
(5.2)

where r ≥ s and the Ai are sufficiently generic real s × r matrices of rank s.

5.2 An Example: P2 into (P1)n

The prototype for our analysis will be based on rational maps of the form

φ : P2 −→ P1 × P1 × . . . × P1

x 7−→ (A1x, A2x, . . . , Anx)
(5.3)

where the Ai are real 2 × 3 matrices of rank 2. In this case, the multiview ideal

Mn is an ideal in C[xi , yi : i = 1, . . . , n], and is prime because VA is an irreducible

variety. Given a set σ = {σ1, . . . , σs} ⊆ [n], we consider the matrix
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Aσ :=



Aσ1 pσ1 0 . . . 0

Aσ2 0 pσ2
. . . 0

...
...

. . . . . .
...

Aσs 0 . . . 0 pσs


(5.4)

where pi := [xi yi]
T . This is a 2s × (s + 3) matrix. Similar to the analysis in [2],

we begin by giving a determinantal representation of the multiview ideal:

Lemma 5.1. The maximal minors of Aσ for |σ| ≥ 3 lie in the prime ideal JA.

Proof. If p = (p1, . . . , pn) ∈ (C2)n is a point in φ(P2), then there are some q ∈

C3 \ {0} and c1, . . . , cn ∈ C \ {0} such that Ai q = ci pi for i = 1, 2, . . . , n. Then the

columns of Aσ are linearly dependent. For |σ| ≥ 3, Aσ has at least as many rows as

columns, so the maximal minors of Aσ must vanish at p.

This lemma gives us a useful characterization of some of the elements of JA, and

by extension, its initial ideal in�JA. To see this, we endow C[xi, yi] with the lexico-

graphic term order

x1 � x2 � . . . � xn � y1 � y2 � . . . � yn

and assume that our matrices A1, . . . An are generic in the sense that the maximal

minors of the 3 × 2n matrix

[AT1 A
T
2 . . . ATn ]
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are invertible. We focus on a particular set of monomials: define the monomial ideal

Mn := 〈xi xj xk : i, j, k distinct indices in [n] 〉 . (5.5)

For distinct i, j, k ∈ [n], consider the 6 × 6 matrix

A{ijk} =


Ai pi 0 0

Aj 0 pj 0

Ak 0 0 pk

 . (5.6)

Since A{ijk} is a square matrix, its only maximal minor is the determinant of the

entire matrix. If we write Art for the rth row of At, then

det A{ijk} = det


A2
i

A2
j

A2
k

 xi xj xk + lex. lower order terms

where the coefficient of xi xj xk is nonzero due to the genericity assumption on

A1, . . . , An. Then xi xj xk ∈ in�JA. This proves the following result:

Lemma 5.2. Mn ⊆ in� JA.

From here, we can mimic the construction in [2] to express VA as the projection of

a diagonal embedding of P3: extend each camera matrix Ai to an invertible 3 × 3

matrix
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Bi =

 bi

Ai

 (5.7)

by adding a row bi to the top. The corresponding diagonal map is

ψB : P2 −→ P2 × P2 × . . . × P2

x 7−→ (B1x, B2x, . . . , Bnx)
(5.8)

Let VB = ψB(P3), JB = I(VB) ⊆ C[wi, xi, yi : i ∈ [n]], and consider the coordinate

projection

π : P2 × P2 × . . . × P2 −→ P1 × P1 × . . . × P1

(wi : xi : yi) 7−→ (xi : yi)
. (5.9)

The composition π ◦ ψB is a rational map that coincides with φ where φ is defined.

Then VA = π(VB) and

JA = JB ∩ C[xi, yi : i ∈ [n]]. (5.10)

The polynomial ring C[wi, xi, yi : i ∈ [n]] admits the Zn-grading

deg(wi) = deg(xi) = deg(yi) = ei (5.11)

where ei is the ith unit vector in Rn. With respect to this grading, the multigraded

Hilbert function of C[wi, xi, yi : i ∈ [n]]/JB is
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H : Nn −→ N

(u1, . . . un) 7−→
(
u1 + ...+un+2

2

) (5.12)

The multigraded Hilbert scheme H3,n, which parametrizes Zn-homogeneous ideals

in C[wi, xi, yi : i ∈ [n]], has a unique Borel-fixed ideal Z3,n that, under the correct

genericity conditions on B1, . . . , Bn, is the initial ideal in�JB. We obtain the fol-

lowing lemma by making use of the results from from Cartwright and Sturmfels in

[3]:

Lemma 5.3. Z3,n is generated by the following monomials, where i, j and k are

distinct indices in [n]:

wiwj, wi xj, xi xj xk.

Also, when B1, . . . , Bn are sufficiently generic, then Z3,n = in� JB with respect to

the lexicographic term order

w1 � w2 � . . . � wn � x1 � . . . � xn � y1 � . . . � yn.

From this, we can prove the following:

Theorem 5.4. If A1, . . . , An are generic, then Mn = in� JA, where � is the lexi-

cographic term order induced by

x1 � x2 � . . . � xn � y1 � . . . � yn

Proof. Fix the term order above on C[wi, xi, yi : i ∈ [n]]. From Lemma 5.3,
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Mn = Z3,n ∩ C[xi, yi : i ∈ [n]]. With respect to the lexicographic term order, the

operation of taking initial ideals and intersections commute, so

in�(JA) = in�(JB ∩ C[xi, yi : i ∈ [n]])

= in�(JB) ∩ C[xi, yi : i ∈ [n]]

= Z3,n ∩ C[xi, yi : i ∈ [n]] = Mn.

Finally, this gives us a determinantal description of the generators of in�JA:

Corollary 5.5. For generic A1, . . . , An, the generators of in� JA are given by the

leading terms of the maximal minors of Aσ for |σ| = 3.

Proof. The generators of in�JA are of the form xi xj xk where i, j, k are distinct

indices in [n]. From Lemma 5.2, these are the leading monomials of det Aijk.

5.3 Generalizations: Pr−1 into (P1)n

The techniques used in the previous section readily generalize to rational maps of

the form

φ : Pr−1 −→ P1 × P1 × . . . × P1

x 7−→ (A1x, A2x, . . . , Anx)
(5.13)

where r ≥ 3 and the Ai are real 2× r matrices of rank 2. Again, we let VA = φ(Pr) be

the multiview variety, JA = I(VA) the multiview ideal, and for σ = {σ1, . . . , σs} ⊆
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[n] we consider the matrix

Aσ :=



Aσ1 pσ1 0 . . . 0

Aσ2 0 pσ2
. . . 0

...
...

. . . . . .
...

Aσs 0 . . . 0 pσs


(5.14)

where pi = [xi yi]
T . In this case, Aσ is a 2s × (r + s) matrix. We proceed in the

same manner as in Section 5.2:

Lemma 5.6. The maximal minors of Aσ for |σ| ≥ r lie in JA.

Proof. The proof is identical to the proof of Lemma 5.1, except in order for Aσ to

have more rows than columns, we require that 2 |σ| ≥ r + |σ|, so |σ| ≥ r.

Lemma 5.7. Let Mn be the ideal generated by monomials of the form

xi1 xi2 . . . xir

for distinct indices i1, i2, . . . , ir ∈ [n]. Assume that A1, . . . , An are generic in the

same sense as in section 1. Then with respect to the lexicographic term order

x1 � x2 � . . . � xn � y1 � . . . � yn,

Mn ⊆ in�JA.

Proof. Given r distinct indices i1, i2, . . . , ir ∈ [n], the corresponding matrix
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A{i1,i2,...,ir} =



Ai1 pi1 0 . . . 0

Ai2 0 pi2
. . . 0

...
...

. . . . . .
...

Air 0 . . . 0 pir


is an r × r square matrix, so its determinant

det A{i1,i2,...,ir} = det



A2
i1

A2
i2

...

A2
ir


xi1 xi2 . . . xir + lex. lower order terms

is in JA. The coefficient of the leading term is nonzero, due to the genericity of

A1, . . . , An. Then xi1 xi2 . . . xir is in in�JA.

The diagonal embedding in this case is similar in principle to the embedding in the

previous section, but in this case we need to add r− 2 rows to each Ai to obtain an

invertible r × r matrix Bi: for each i, let

Bi :=



b1i

b2i
...

br−2i

Ai


be the matrix Ai with r − 2 rows added to create an invertible matrix. The corre-
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sponding diagonal embedding is

ψB : Pr−1 −→ Pr−1 × Pr−1 × . . . × Pr−1

x 7−→ (B1x, B2x, . . . , Bnx)
. (5.15)

As before, we let VB = ψB(Pr−1). The corresponding ideal JB = I(VB) is an ideal

in the polynomial ring C[wi,j, xj, yj : i ∈ [r − 2], j ∈ [n]]. Let

π : Pr−1 × Pr−1 × . . . × Pr−1 −→ P1 × P1 × . . . × P1

(w1,j : w2,j : . . . : wr−2,j : xj : yj) 7−→ (xj : yj)
. (5.16)

Then φ and π ◦ ψB agree wherever φ is defined, so VA = π(VB) and JA = JB ∩

C[xj, , yj : j ∈ [n]]. The polynomial ring C[wi,j, xj, yj : i ∈ [r − 2], j ∈ [n]] admits

the Zn-grading

deg(w1,i) = deg(w2,i) = . . . = deg(wr−2,i) = deg(xi) = deg(yi) = ei

where ei is the ith standard unit vector in Rn. With respect to this grading, the

multigraded Hilbert function of C[wi,j, xj, yj : i ∈ [r − 2], j ∈ [n]]/JB is

H(u1, . . . , un) =

(
u1 + . . . + un + r − 1

r − 1

)
which again puts us in a position to use the results in [3]: now, we consider the

multigraded Hilbert scheme Hr,n which has a unique Borel-fixed ideal Zr,n that,

under similar genericity conditions on B1, . . . , Bn, is the initial ideal of JB. With

respect to the term order

w1,1 � . . . w1,n � w2,1 � . . . � wr−2,n � x1 � . . . � xn � y1 � . . . � yn,
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we have that JA is the elimination ideal obtained by eliminating the variables wi,j

(for i ∈ [r− 2] and j ∈ [n]) from JB, so the same result follows at the level of initial

ideals: in�(JA) will be the ideal in�(JB) ∩ C[xj, yj : j ∈ [n]].

For ease of exposition, we rename the variables {x1, . . . , xn} and {y1, . . . , yj} to

{wr−1,1, . . . , wr−1,n} and {wr,1, . . . , wr,n}, respectively. In this setting, [3, Theorem

2.5] characterizes the generators of Zr,n:

Proposition 5.8. The generators of Zr,n ⊆ C[wi,j : i ∈ [r], j ∈ [n]] are monomials

of the form

wi1,j1 wi2,j2 . . . wik,jk

where

(1) 2 ≤ k ≤ min(r, n)

(2) 1 ≤ k − 1 ≤ i1, i2, . . . , ik ≤ r − 1

(3) j1 < j2 < . . . < jk

(4) i1 + i2 + . . . + ik ≤ r(k − 1).

The next step is to compute the elimination ideal Z = Zr,n ∩ C[wi,j : i ∈ {r −

1, r}, j ∈ [n]]:

Lemma 5.9. The generators of Z are monomials of the form
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wr−1,j1 wr−1,j2 . . . wr−1,jk

where j1 < j2 < . . . < jk.

Proof. A monomial generator of Zr,n is of the form

w = wi1,j1 wi2,j2 . . . wik,jk

satisfying conditions (1)-(4) of Proposition 5.8. If w ∈ Z, then by condition (2),

il = r − 1 for all l ∈ [k], and by condition (4),

i1 + i2 + . . . + ik = k(r − 1) ≤ r(k − 1)

−k ≤ −r

k ≥ r

but by condition (2), k− 1 ≤ r− 1 implies that k ≤ r, so we must have that k = r,

and w is of the form

w = wr−1,j1 wr−1,j2 . . . wr−1,jk .

Since we have identified xj and yj with wr−1,j and wr,j, respectively, this shows

that the elimination ideal Zr,n ∩ C[xj, yj : j ∈ [n]] is the ideal generated by the

monomials

xj1 xj2 . . . xjr
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where j1, . . . , jr are distinct indices in [n]. This gives us the following generalization

of Theorem 1:

Theorem 5.10. When A1, . . . An are generic, then in�(JA) = Mn, where � is the

lexicographic term order induced by

x1 � x2 � . . . � xn � y1 � . . . � yn.

Proof. The above argument shows that Zr,n ∩ C[xj, yj : j ∈ [n]] = Mn. As before,

since taking initial ideals commutes with intersections,

in�(JA) = in�(JB ∩ C[xj, yj : j ∈ [n]])

= in�(JB) ∩ C[xj, yj : j ∈ [n]]

= Zd,n ∩ C[xj, yj : j ∈ [n]]

= Mn.

In particular, this shows that the generators of in�(JA), like in Section 5.1, have a

determinantal representation as the leading monomials of maximal minors of Aσ.

5.4 Generalizations: Pr into (Pr−1)n

The rational maps in the previous sections gave rise to multiview ideals JA where it

was relatively straightforward to come up with a determinantal representation for

in�(JA). In general, this is less straightforward: for r ≥ 3, consider a rational map
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φ : Pr −→ Pr−1 × Pr−1 × . . . × Pr−1

x 7−→ (A1x, A2x, . . . , Anx)
(5.17)

where A1, . . . , An are real r × (r + 1) matrices of rank r. Let VA = (φ(Pr) and

JA = I(VA) ⊆ C[xi,j : i ∈ [r], j ∈ [n]] be the multiview variety and ideal of φ, and

for σ = {σ1, . . . , σs} ⊆ [n] and pk = [x1,k x2,k . . . xr,k]
T , consider the matrix

Aσ :=



Aσ1 pσ1 0 . . . 0

Aσ2 0 pσ2
. . . 0

...
...

. . . . . .
...

Aσs 0 . . . 0 pσs


. (5.18)

This is an sr × (s+ r + 1) matrix, which suggests the following result:

Lemma 5.11. The maximal minors of Aσ, for |σ| ≥ 2, are in JA.

Proof. The argument is the same as in Lemma 5.1, except in order to ensure that

Aσ has more rows than columns, we require that sr ≥ s + r + 1, or equivalently,

s ≥ d r+1
r−1e. For r ≥ 3, d r+1

r−1e = 2, so s ≥ 2.

As in the case of P2, we give the polynomial ring C[xi,j : i ∈ [r], j ∈ [n]] the

lexicographic term order

xa,b � xc,d ⇐⇒ a < c or a = c and b < d.

First, we will use the results from [3] to give a description of the generators of
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in�(JA):

Lemma 5.12. For n ≥ r + 1, the generators of in�(JA) are of the form

xi1 j1 xi2 j2 . . . xik jk

where

(1) 2 ≤ k ≤ r + 1

(2) j1 < j2 < · · · < jk

(3) 1 ≤ k − 1 ≤ i1, i2, . . . , ik ≤ r − 1, and

(4) i1 + i2 + · · ·+ ik ≤ r (k − 1)− 1.

Proof. This follows from mimicing the construction in Sections 5.2 and 5.3: to each

matrix Ai, we add a row bi to create an (r + 1) × (r + 1) invertible matrix

Bi :=

 bi

Ai

 .
Then we let

ψ : Pr+1 −→ Pr−1 × . . . × Pr−1

x 7−→ (B1 x, . . . , Bnx)

and consider the variety VB = ψ(Pr−1) and its ideal JB = I(VB). If we think of JB

as an ideal in C[wj, xij : i ∈ [r], j ∈ [n]], then [3, Theorem 2.5] characterizes the



69

generators of ∈� JB where � is the original term order in C[xij : i ∈ [r], j ∈ [n]]

with

w1 � w2 � . . . � wn � xij

for all i, j. The result is obtained by eliminating the wi variables with respect to

this term order.

Here, it is not as clear that these monomials appear as the leading terms of minors

of Aσ; one difficulty that we encounter is that the size of σ is allowed to vary, unlike

in the previous cases. However, it turns out that a description similar to Theorems

5.4 and 5.10 is possible:

Theorem 5.13. For generic matrices A1, . . . , An, the monomials described in Lemma

5.12 are the leading terms of maximal minors of Aσ.

Proof. For a monomial x = xi1 j1 xi2 j2 . . . xik jk of the form above, consider the

corresponding matrix

A =



Ai1 pi1 0 . . . 0

Ai2 0 pi2
. . . 0

...
...

. . . . . .
...

Aik 0 . . . 0 pik


.

This is a rk × (r+k+1) matrix, so the maximal minors of this matrix are obtained

by removing rk−r−k−1 rows. We will form a maximal minor A0 of A by removing
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every row of A containing a variable not in x and lexicographically greater than a

variable in x. This is possible because by condition (4) of Lemma 5.12, for each

variable xil,jl , there are at most i1 − 1 lexicographically greater variables in the set

{x1,j1 , x2,j1 , . . . , xil,jl , . . . , xr,jl}, so in the matrix Aσ there are at most i1 − 1 such

variables in the same column as xil,jl . Then in total we must remove

(i1 − 1) + (i2 − 1) + . . . + (ik − 1) = i1 + i2 + . . . + ik − k

rows from Aσ, which by condition (4) of Lemma 5.12 is bounded above by r(k −

1)− 1− k = rk− r− k− 1. This shows that we are able to remove exactly the rows

we need, to obtain a maximal minor A0 such that

det A0 = a0 x + lower order terms

where a0 is the determinant of a subset of the rows of the Aik , which is nonzero by

the assumption that A1, . . . , An is generic.

5.5 Generalizations: Pr−1 into (Ps−1)n

We now consider the most general class of rational maps: let n ≥ r ≥ s > 1, and let

φ : Pr−1 −→ Ps−1 × Ps−1 × . . . × Ps−1

x 7−→ (A1x, A2x, . . . , Anx)
(5.19)

where A1, . . . , An are real s × r matrices of rank s. As before, let VA = φ(Pr−1) be

the multiview variety, JA = I(VA) the multiview ideal in C[xi,j : i ∈ [s], j ∈ [n]],
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and for σ = {σ1, . . . , σk} ⊆ [n], let

Aσ :=



Aσ1 pσ1 0 . . . 0

Aσ2 0 pσ2
. . . 0

...
...

. . . . . .
...

Aσk 0 . . . 0 pσk


(5.20)

where pj := [x1,j x2,j . . . xs,j]
T . This is a ks × r+ k matrix, so for Aσ to have more

rows that columns, we need that k ≥ r
s−1 . By following the same argument as in

Lemma 5.1, we can conclude the following:

Lemma 5.14. The maximal minors of Aσ, for |σ| ≥ d r
s−1e, lie in JA.

Our ultimate goal is to give a determinantal representation of in�(JA) with respect

to the lexicographic term order

xa,b � xc,d ⇐⇒ a < c or a = c and b < d

and with the same genericity assumption on the Ai as before.

We add r − s rows, b1i , . . . b
r−s
i to Ai to obtain an invertible r × r matrix

Bi :=



b1i
...

br−si

Ai


for i = 1, . . . n. Define a map
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ψB : Pr−1 −→ Pr−1 × Pr−1 × . . . × Pr−1

x 7−→ (B1x, B2x, . . . , Bnx)
(5.21)

and let VB = ψB(Pr−1) and JB = I(VB) ⊆ C[yi,j, xk,j : i ∈ [r − s], k ∈ [s], j ∈ [n]].

We can realize our original map φ as a composition of ψB with a projection: let

π : Pr−1 × Pr−1 × . . . × Pr−1 −→ Ps−1 × Ps−1 × . . . × Ps−1

(yi1 : . . . : yir−s : xi1 : . . . : xis) 7−→ (xi1 : . . . : xis).
(5.22)

Then φ = π ◦ ψB whenever φ is defined. Then VA = π(VB), and JA = JB ∩ C[xi,j :

i ∈ [s], [j] ∈ [n]]. Note that JB is generated by the 2 × 2 minors of the matrix

[
B−11 p1 B

−1
2 p2 . . . B

−1
n pn

]
where pi = [y1,i y2,i . . . yr−s,i x1,i . . . xs,i]

T . Now we compute the Hilbert function

of C[yi,j, xk,j : i ∈ [r − s], k ∈ [s], j ∈ [n]]/JB with respect to the Zn-grading

deg(y1,j) = . . . = deg(yr−s,j) = deg(x1,j) = . . . = deg(xs,j) = ej, where ej is the

jth standard unit vector in Rn.

Nn −→ N, (u1, . . . , un) 7−→
(
u1 + . . . + un + d− 1

d− 1

)
. (5.23)

This puts us in a position to use the results from [3]: in particular, that the unique

Borel-fixed ideal Zr,n of the multigraded Hilbert scheme Hr,n, under the correct

genericity conditions on the Bi, is the initial ideal of JB. Our goal is to characterize

the generators of Zd,n. As in Section 5.3, we rename the variables xi,j to yr−s+i,j

and consider Zr,n as an ideal in C[yi,j : i ∈ [r], j ∈ [n]].
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Lemma 5.15. The ideal Zr,n ⊆ C[yi,j : i ∈ [r], j ∈ [n]] is generated by all mono-

mials of the form

yi1,j1 yi2,j2 . . . yik,jk

where

(1) 2 ≤ k ≤ min(r, n)

(2) 1 ≤ k − 1 ≤ i1, i2, . . . , ik ≤ r − 1

(3) j1 < j2 < . . . < jk

(4) i1 + i2 + . . . + ik ≤ r(k − 1).

The ideal Z that we are interested in is the ideal we obtain by eliminating yi,j for

1 ≤ i ≤ r − s:

Corollary 5.16. The ideal Z = Zr,n ∩ C[yi,j : r − s + 1 ≤ i ≤ r, j ∈ [n]] is

generated by all monomials of the form

yi1,j1 yi2,j2 . . . yik,jk

where

(1) d r
s−1e ≤ k ≤ r

(2) 1 ≤ k − 1 ≤ i1, i2, . . . , ik ≤ r − 1
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(3) j1 < j2 < . . . < jk

(4) i1 + i2 + . . . + ik ≤ r(k − 1).

Proof. The only difference between this statement and the statement of Lemma 5.15

is (1). A monomial in Z is of the form

yi1,j1 yi2,j2 . . . yik,jk

where i1, . . . , ik ≥ r− s+ 1 and i1 + i2 + . . . + ik ≤ r(k−1). Then i1 + i2 + . . . ik ≥

k (r − s+ 1) and

k (r − s+ 1) ≤ r(k − 1)

k(1− s) ≤ −r

k ≥ − r

1− s
=

r

s− 1
(since s > 1, 1− s < 0) ,

so k ≥ d r
s−1e.

If we identify the xi,j with the yr−s+i,j in the above lemma, we obtain the following

result:

Corollary 5.17. Identifying the xi,j with the yr−s+i,j, the above ideal Z in C[xi,j :

i ∈ [s], j ∈ [n]] is the ideal generated by monomials of the form

xi1,j1 xi2,j2 . . . xik,jk

where
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(1) d r
s−1e ≤ k ≤ r

(2) 1 ≤ i1, i2, . . . , ik ≤ s− 1

(3) j1 < j2 < . . . < jk

(4) i1 + i2 + . . . + ik ≤ sk − r.

Proof. (1) and (3) are unchanged from Lemma 5.16 because we identify the variables

xi,j with yr−s+i,j, where i ∈ [s]. This changes the upper bound in (2) from r to s.

Finally, the upper bound in (4) changes because given a monomial

xi1,j1 xi2,j2 . . . xik,jk

in Z, where il ∈ [s], the corresponding monomial from the setting of Lemma 5.16 is

yr−s+i1,j1 yr−s+i2,j2 . . . yr−s+ik,jk

where

(r − s+ i1) + (r − s+ i2) + . . . + (r − s+ ik) ≤ r(k − 1)

k(r − s) + i1 + i2 + . . . + ik ≤ r(k − 1)

i1 + i2 + . . . + ik ≤ sk − r.

Corollary 5.17 gives us a characterization of the generators of Z. The connection

between the ideal Z and the initial ideal of JA is that Z arises as an elimination ideal
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of Zd,n, which by [3] is the initial ideal of JB. But JA itself arises as an elimination

ideal of JB, so the same result will follow at the level of initial ideals:

Theorem 5.18. When A1, . . . , An are generic, in�(JA) = Z.

Proof. With respect to the lexicographic term order, the operation of taking the

initial ideal commutes with intersecting ideals. Therefore,

in�(JA) = in�(JB ∩ C[xi,j : i ∈ [s], j ∈ [n]])

= in�(JB) ∩ C[xi,j : i ∈ [s], j ∈ [n]]

= Zd,n ∩ C[xi,j : i ∈ [s], j ∈ [n]]

= Z.

Finally, we use Corollary 5.17 to give a determinantal representation of the genera-

tors of Z:

Theorem 5.19. When A1, . . . An are generic, the generators of Z are leading

monomials for a maximal ideal of Aσ for some σ ⊆ [n].

Proof. A monomial generator of Z is of the form

xi1,j1 xi2,j2 . . . xik,jk

satisfying conditions (1)-(4) of Lemma 5.12. In particular, il ∈ [s − 1]. Let σ =

{i1, i2, . . . , ik}. Then
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Aσ =



Ai1 pi1 0 . . . 0

Ai2 0 pi2
. . . 0

...
...

. . . . . .
...

Aik 0 . . . 0 pik


is a ks × r + k matrix. Assuming that k ≥ d r

s−1e, we have that ks ≥ r + k, so we

must remove ks − r − k rows to produce a maximal minor of Aσ. In each block of

variables x1,jl , x2,jl , . . . xil,jl . . . xs,jl , there are il−1 variables greater than xil,jl with

respect to �, so in total the number of variables in the vectors pi1 , . . . , pik that we

must eliminate is

(i1 − 1) + (i2 − 1) + . . . + (ik − 1)

which by condition (3) of Lemma 5.17 is bounded above by sk − r− k. This shows

that we can form a maximal minor of Aσ in the following way: for each submatrix[
Ail . . . pil . . .

]
of Aσ, remove every row containing a variable xil,m that is lexicographically greater

than xil,jl . By the argument above, the number of rows that we need to remove in

this fashion is bounded above by the number of rows that we are allowed to remove

to form a maximal minor of Aσ. Therefore, it is possible to form a maximal minor

of Aσ of the form

a0 xi1,j1 xi2,j2 . . . xik,jk + lex. lower order terms
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where a0 is the determinant of some subset of rows of the Ai, which by our genericity

assumption will be nonzero.

5.6 A Universal Gröbner Basis

So far, we have characterized the initial ideal of the multiview ideal defined by the

rational map

φ : Pr−1 −→ Ps−1 × Ps−1 × . . . × Ps−1

x 7−→ (A1x, A2x, . . . , Anx)

where n ≥ r ≥ s > 1, and the A1, . . . , An are s × r matrices of rank s. When the

Ai are generic, then the initial ideal of JA is generated by the leading terms of the

maximal minors of the matrix

Aσ :=



Aσ1 pσ1 0 . . . 0

Aσ2 0 pσ2
. . . 0

...
...

. . . . . .
...

Aσs 0 . . . 0 pσs


where pσi = [x1,σi x2,σi . . . xs,σi ]

T and σ = {σ1, . . . , σk} is a k-subset of [n] where

d r

s− 1
e ≤ k ≤ r.

We use this to prove the following:

Theorem 5.20. Let A1, . . . , An be generic. Then the set of maximal minors of Aσ,
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where d r
s−1e ≤ |σ| ≤ r is a universal Gröbner basis for JA.

Proof. Let M be the set of all maximal minors of Aσ, for all σ ⊆ [n] where d r
s−1e ≤

|σ| ≤ r. We already know that M ⊆ JA. Given a polynomial f ∈ JA, Lemma

9 shows that the leading term of f is an element of in�M . Then there exists a

polynomial g1 ∈ M such that the leading term of g1 divides the leading term of f ,

and there exists some polynomial h1 such that the leading terms of f and h1 g1 are

the same; then f − h1 g1 is a polynomial in JA whose degree, with respect to �, is

strictly less than f . We can repeat this process with f − h1 g1 and conclude that

f − h1 g1 − h2 g2 − . . . − hm gm = 0

where the gi are generated by maximal minors of Aσi , for some subsets σi ⊆ [n] with

d r
s−1e ≤ |σi| ≤ r. This shows that M generates JA; since the leading terms of M

generate in�JA, this shows that M is a Gröbner basis of JA with respect to �.

To show that M is a universal Gröbner basis, we begin with the following observa-

tion. Let f ∈M . Then there exists some σ ⊆ [n] such that f is formed by removing

some rows from the matrix

Aσ :=



Aσ1 pσ1 0 . . . 0

Aσ2 0 pσ2
. . . 0

...
...

. . . . . .
...

Aσs 0 . . . 0 pσs


and taking the determinant of the resulting submatrix. With respect to the original
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term order �, the leading monomial of f can be read off by looking at each column

pσ1 , . . . , pσr and recording the variable in the first row (for example, if the row con-

taining xσ1 was removed but the row containing yσ1 was not, the leading monomial

of f will contain yσ1). The remaining monomials of f come from taking all possible

combinations of taking one variable from each column pσ1 , . . . , pσr . Since the Ai

are generic, the coefficients of each monomial, which are the determinants of some

subset of the rows of the Ai, will be nonzero, so all such monomials will appear as

a monomial in f .

Let �′ be any lexicographic term order. The set of maximal minors M is invariant

under term orders, so it still generates JA. Then in�′M ⊆ in�′JA. We will first

show that the generators of in�′M are in bijection with the generators of in�M . Let

f ∈M . There exists some σ ⊆ [n] such that f is a maximal minor of

Aσ =



Aσ1 pσ1 0 . . . 0

Aσ2 0 pσ2
. . . 0

...
...

. . . . . .
...

Aσk 0 . . . 0 pσk


.

The term order �′ permutes the ordering of the variables in each column vector pσi ,

in the sense that there exists some τi ∈ Ss (not necessarily the same for each σi)

such that

xτi(1),σi �′ xτi(2),σi �′ . . . �′ xτi(s),σi .
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For each i, let p′σi = [xτi(1),σi xτi(2),σi . . . xτi(s),σi ]
T , and let A′σi be the matrix Aσi

with the rows permuted with respect to τi. Consider the matrix

A′σ =



A′σ1 p′σ1 0 . . . 0

A′σ2 0 p′σ2
. . . 0

...
...

. . . . . .
...

A′σk 0 . . . 0 p′σk


where the rows of the σth

i block [A′σi . . . p
′
σi
. . . ] are permuted by τi (so the mth

row of the block [Aσi . . . pσi . . . ] is the τi(m)th row of [A′σi . . . p
′
σi
. . . ]). Let f ′ be

the determinant of the maximal minor fo A′σ obtained by removing the same rows

that were removed from Aσ to form f (i.e., if the jth row of Aσ is removed, then

the jth row of A′σ is removed). Since A′σ is defined by permuting the rows of Aσ, f ′,

up to a power of (−1), is a maximal minor of Aσ, so LM�′(f
′) ∈ in�′M . LM�′(f

′)

can be obtained from A′σ in the same way that LM�(f) can be obtained from Aσ

(recording the top variable left in each column p′σi . If

LM�(f) = xi1,j1 xi2,j2 . . . xik,jk

then

LM�′(f
′) = xτ1(i1),j1 xτ2(i2),j2 . . . xτk(ik),jk

which defines a map
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{generators of in�M} −→ {generators of in�′M}

xi1,j1 xi2,j2 . . . xik,jk 7−→ xτ1(i1),j1 xτ2(i2),j2 . . . xτk(ik),jk

and its inverse

{generators of in�′M} −→ {generators of in�M}

xi1,j1 xi2,j2 . . . xik,jk 7−→ xτ−1
1 (i1),j1

xτ−1
2 (i2),j2

. . . xτ−1
k (ik),jk

which shows that the generators of in�′M and in�M = in�JA are in bijection. In

particular, this means that the Hilbert function of C[xi,j : i ∈ [s], j ∈ [n]]/in�′M is

the same as the Hilbert function of C[xi,j : i ∈ [s], j ∈ [n]]/in�JA. But the Hilbert

function of C[xi,j : i ∈ [s], j ∈ [n]]/in�JA is the Hilbert function of C[xi,j : i ∈

[s], j ∈ [n]]/JA.

Since the Hilbert functions of C[xi,j : i ∈ [s], j ∈ [n]]/in�′M and C[xi,j : i ∈

[s], j ∈ [n]]/JA coincide, this forces in�′M = in�′JA, so M is a Gröbner basis of

JA with respect to �′. This shows that M is a Gröbner basis with respect to any

lexicographic term order.

Now let �′ be any term order. Again, the set of maximal minors M is invariant

under changing term orders, so it still generates JA. Let �′lex be the lexicographic

term order induced by the ordering of the variables xi,j under �′. Let f ∈M . Then

for some σ ⊆ [n], f , up to a power of −1, is a maximal minor of
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A′σ =



A′σ1 p′σ1 0 . . . 0

A′σ2 0 p′σ2
. . . 0

...
...

. . . . . .
...

A′σk 0 . . . 0 p′σk


where p′σi and A′σi are defined above, with respect to the term order �′lex. LM�′lex(f)

can be obtained by recording the top variable left in each column p′σi . Any other

monomial xα that appears in the support of f will differ from LM�′lex(f) by picking

variables from the pσi that are less than, with respect to �′, the top remaining

variable in pσi . Therefore, LM�′lex(f) �′ xα for all other monomials xα that appear

in the support of f .

This shows that for any f ∈ M , LM�′lex(f) = LM�′(f), so in�′M = in�′lexM =

in�′lexJA. In particular, this means that the Hilbert functions of C[xi,j : i ∈ [s], j ∈

[n]]/in�′M and C[xi,j : i ∈ [s], j ∈ [n]]/in�′lexJA coincide. By the same argument as

in the lexicographic case, this forces in�′M = in�′JA. Then M is a Gröbner basis of

JA with respect to �′, which shows that M is a universal Gröbner basis of JA.

5.7 The Primary Decomposition and Hilbert Function of in�(JA)

In the case of a rational map φ : P2 −→ P1 × . . . × P1 defined by generic 2 × 3

matrices A1, . . . , An, it is possible to read off the primary decomposition of in�(JA):

Proposition 5.21. The primary decomposition of in�JA is
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in� JA =
⋂
i,j

Pi,j

where Pi,j = 〈xk : k ∈ [n] \{i, j}〉 and the intersection runs over all distinct indices

i, j,∈ [n]. Here, the Pi,j are also prime ideals.

Proof. A generator of JA is of the form xa xb xc for distinct indices a, b, and c ∈ [n].

If xa xb xc /∈ Pi,j for some i, j ∈ [n], then xa, xb and xc are all not in Pi,j, which is a

contradiction. This shows that in�JA is contained in the intersection of the Pi,j.

Conversely, given a monomial xα in the intersection of the Pi,j, there must exist

three distinct indices a, b, and c ∈ [n] such that xa xb xc divides xα; otherwise xα

is a unit multiple of xi xj for some i, j ∈ [n], and then xα /∈ Pi,j, a contradiction.

This shows that the intersection of the Pi,j is contained in in�JA, so the two are

equal.

We can use this primary decomposition to compute the multigraded Hilbert function

of the quotient ring C[xi, yi : i ∈ [n]]/in�JA:

Proposition 5.22. With respect to the Zn-grading deg(xi) = deg(yi) = ei, where

ei is the ith standard unit vector in Rn, C[xi, yi : i ∈ [n]]/ in� JA has the Hilbert

function

H(u1, . . . , un) = 1 +
n∑
i=1

ui +
∑
i,j∈[n]

ui uj (5.24)
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Proof. Let u = (u1, . . . , un) ∈ Nn. H(u) counts the number of monomials of degree

u (with respect to the Zn-grading) in C[xi, yi : i ∈ [n]]/in�JA. Such a monomial is

of the form xa yb, where a = (a1, . . . , , an), b = (b1, . . . , bn), and a + b = u. Then

bi = ai − ui for all i ∈ [n], and the choice of ai determines bi for each i. Using the

primary decomposition of in�JA, xa yb /∈ Pi,j for some i, j ∈ [n]. Then ak = 0 for

all k 6= i, j. To prevent overcounting, we count the number of possible monomials

xa yb by considering 3 cases:

(1) a = 0: this contributes one monomial, yu, to the count.

(2) ak = 0 for all k 6= i, for some i ∈ [n], and ai > 0. Then 1 ≤ ai ≤ ui so there

are ui possible choices for ai. Summing over all i ∈ [n], this contributes

n∑
i=1

ui

to the count.

(3) ai > 0 and aj > 0 for two distinct indices i, j ∈ [n], and ak = 0 for all k 6= i, j.

Then there are ui uj possible choices for i and j, and summing over all distinct

pairs i, j ∈ [n], this contributes

∑
i,j∈[n]

ui uj

to the count.
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Adding each of these cases together, we conclude that the number of distinct mono-

mials xa yb such that a+ b = u is

1 +
n∑
i=1

ui +
∑
i,j∈[n]

ui uj.

Now we consider the case where φ : Pr−1 −→ P1 × . . . × P1 is a rational map defined

by generic 2 × r matrices A1, . . . , An. In this case, we’ve shown that

in�(JA) = 〈xj1 xj2 . . . xjr : j1, j2, . . . jr are distinct indices in [n] 〉

which has the following prime decomposition:

Proposition 5.23.

in�(JA) =
⋂
σ

〈xi : i ∈ σ〉,

where the intersection runs over all (n− r + 1)-subsets σ of [n].

Proof. A generator of in�(JA) is of the form xj1 xj2 . . . xjr where j1, . . . , jr are

distinct indices in [n]. Then for every (n− r + 1)-subset σ ⊆ [n], there exists some

l ∈ [r] such that jr ∈ σ (otherwise, σ contains at most (n − r) elements of [n], a

contradiction). This shows that

in�(JA) ⊆
⋂
σ

〈xi : i ∈ σ〉.

Conversely, if x is a monomial in the right side, there must exist r distinct indices

j1, . . . , jr in [n] such that xj1 xj2 . . . xjr divides x; otherwise, x is the unit multiple
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of at most r − 1 distinct variables xj1 , . . . , xjr−1 . In this case, x /∈ 〈xi : i ∈

[n]\{j1, . . . , jr−1}〉, which is a contradiction since [n]\{j1, . . . , jr−1} is an (n−r+1)-

subset of [n]. This shows the other inclusion.

Again, we can use this decomposition of in�(JA) to compute the Hilbert function of

in�(JA):

Proposition 5.24. With respect to the Zn grading deg(xi) = deg(yi) = ei, where

ei is the ith standard unit vector in Rn, C[xi, yi : i ∈ [n]]/ in�(JA) has the Hilbert

function

H(u1, . . . , un) = 1 +
r−1∑
i=1

∑
{j1, j2, ... ,ji}⊆[n]

i∏
l=1

uji . (5.25)

Proof. Let u = (u1, . . . , un). H(u) counts the number of monomials of degree u

(with respect to the Zn-grading) in C[xi, yi : i ∈ [n]]/in�(JA). Such a monomial

is of the form xa yb, where a = (a1, . . . , an), b = (b1, . . . , bn) and a + b = u. Then

bi = ui − ai for all i ∈ [n], and the choice of ai determines bi for each i. It suffices

to count the number of monomials xa yb /∈ Pσ for some (n − r + 1)-subset σ of

[n]. Equivalently, we want ak = 0 for all but at most (r − 1) indices. To prevent

overcounting, we count the number of possible monomials xa yb where a + b = u,

ak = 0 for all but exactly j indices (where j ∈ [r − 1]). The number of such

monomials is



88

1 +
r−1∑
i=1

∑
{j1, j2, ... ,ji}⊆[n]

i∏
l=1

uji .
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Chapter 6

Conclusion

The goal of our research was to generalize the results on the existence of epipolar

matrices in and the structure of the multiview ideal. In [1], sufficient conditions

for the existence of epipolar matrices were given, based on the rank of a particular

linear map Z and whether the projective cameras were assumed to be uncalibrated or

totally calibrated. In Chapter 4, we extended the rank condition to the case where

the cameras are partially calibrated, using the properties of projective varieties

described in Chapter 2.

In Chapter 4, we examined two types of partially calibrated camera systems. In

Section 3 of Chapter 4, we considered pairs of cameras where the partially cali-

brated camera was known to have a diagonal calibration matrix, and we proved

that the rank condition in this case is the same as the rank condition for totally

calibrated cameras. Then in Section 4 of Chapter 4, we relaxed the condition on

the calibration matrix and in this case, the rank condition was exactly the same as
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in the uncalibrated case.

These results are somewhat surprising, since what seemed to be intermediate cases

for calibration behave like the two extreme cases for calibration. It would be inter-

esting to consider other characterizations of partial calibration and determine if a

more intermediate case exists.

In Chapter 5, we generalized some of the results in [8] regarding the structure of the

multiview ideal by examining the structure of the ideal JA of the rational map

φ : Pr−1 −→ Ps−1 × Ps−1 × . . . × Ps−1

x 7−→ (A1x, A2x, . . . , Anx)

where n ≥ r ≥ s > 1, and A1, . . . , An are s × r matrices of rank s. The primary

objects of interest here are the monomial ideals and Gröbner bases described in

Chapter 2. In Sections 3, 4 and 5 of Chapter 5, we were able to mimic the argument

used in [2, Section 2] and use the results from [3] to characterize the initial ideal of

JA as the leading terms of maximal minors of a particular set of matrices Aσ. In

Section 6, we proved that these maximal minors actually define a universal Gröbner

basis for JA. Finally, in Section 7, we obtained a prime decomposition for the initial

ideal of JA in the case where φ is a map from Pr−1 into (P1)n. This result is used to

compute the multigraded Hilbert function of in �JA.

While we were able to generalize the result regarding the universal Gröbner basis

of JA in [2], we were unable to generalize the primary decomposition of its initial
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ideal except for the cases described in Section 7. This result, for general r ≥ s > 1,

would allow us to compute the multigraded Hilbert function of the initial ideal.
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