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Chapter 1

Introduction

Computer vision is a field centered around analyzing and extracting information
from image data, and mimicing the processes of biological vision (such as percep-
tion) with artificial systems. [8] Solving problems in computer vision requires tech-
niques from many disciplies, including computer science, physics, neuroscience, and
mathematics. The intersection of computer vision and mathematics is concerned
with understanding the geometry of images and cameras, and the relationship be-
tween the two. These relationships can often be stated as systems of polynomial
equations, so methods in algebraic geometry end up being very useful in attacking

these problems.

1.1 Partially Calibrated Epipolar Matrices

The first step in framing computer vision problems in a mathematical context is

to think of a camera as a matrix. When a camera takes a picture, it produces a



two-dimensional image of a three-dimensional object, so we can think of the camera
as being a map from R3 to R%2. Moreover, the mapping is a projection from R? to
R2, so a camera can be thought of as a linear map from R? to R%. In practice, it
turns out that the natural environment for these objects is the projective space, so
a camera can be thought of as a linear map from three-dimensional projective space
P3, to two-dimensional projective space P2, Since the camera is a linear map, we
can then associate to it a matrix P, which encodes the relevant characteristics of
the camera, such as the position of its center, the aspect ratio of the image points,
and the focal length of the camera. These characteristics determine the calibration

information of the camera.

One class of problems in computer vision is to understand the relationship between
the image and the characteristics of the camera that has taken the image. Whenever
we look at a picture, we can deduce information about the camera that took it, by
looking at the perspective, relative position of objects in the picture, and so on.
More generally, given multiple images, taken by multiple cameras, we would like to

determine the calibration information of the cameras that took the images.

We consider the case of two images being taken by two cameras in Figure[1.1l Each
world point X; projects down to two image points, x; in the first image and y; in the
second image. In this case, corresponding pairs of image points (x;, y;) must satisfy
a set of polynomial constraints called epipolar constraints. These constraints take

the form of a real 3 x 3 matrix, called an epipolar matriz. [§]



Figure 1.1: A world point X; and the corresponding pair of image points (z;, ;)
taken by two cameras.

A slight variation of the problem stated above is determining whether, given a set
of corresponding image points, an epipolar matrix exists such that the image points
satisfy the corresponding epipolar constraints. For a given set of corresponding
image points {(z1,v1), ..., (Zn,yn)}, the epipolar constraints translate to a set of
polynomial equations in the entries of a 3 x 3 matrix. Therefore, the question
of certifying the existence of an epipolar matrix boils down to the existence of a

nontrivial real solution to all of those polynomial equations.

What is already known about this problem can be divided into two broad cases: first,
the uncalibrated case, which assumes we know nothing about the calibration of the
two cameras, and second, the totally calibrated case, in which we know everything

about the calibration of the two cameras. These results are presented in [I]. One



area of our research considers an intermediate case, in which we know the calibration

information about one camera, but not the other.

1.2  The Multiview Ideal

In the same way that we can think of a camera as a linear map, a set of n cameras
can be thought of as a single map, from P? to n copies of P2. The image of this map,
called the multiview variety, are the solutions to a set of polynomial equations called
the multiview ideal. As shown in [2], a great deal is known about the structure of this
ideal, but it is a specific instance of a more general construction. Since the cameras
that produce the multiview variety are defined as 3 x 4 matrices, we can consider
what happens when we let the dimensions of the matrices vary. More specifically, a
set of n s X r matrices define a map from P"~! to n copies of P*~!. While we lose
the connection to computer vision in this case, the points in the image of this map
still satisfy polynomial constraints. The second area of our research examines the

structure of the multiview ideal in this more general case.

1.3 Results

A paper by Agarwal, Lee, Sturmfels, and Thomas [I] relates the existence of an
epipolar matrix, in both the calibrated and uncalibrated case, to the rank of a

linear map Z defined by the image points {(x1,v1), ..., (Tn,yn)}. We attempt to



extend these results to the partially calibrated case, where the calibration of only
one camera is known. From the original map Z we define a family of linear maps
Z i parametrized by the possible calibrations of the camera whose calibration was
unknown. The calibration information of a camera can be expressed as an upper
triangular matrix, defined up to scale. Therefore, the calibration matrix can then
be considered an element of P4, and we discovered that the set of all such possible
calibrations is a subset of P* whose Zariski closure is the entirety of P*. Intuitively,
this means that the case of one camera being calibrated is very close to the case
of both cameras being completely calibrated, since most random upper triangular

matrices will result in a valid calibration.

Another paper, by Aholt, Sturmfels, and Thomas [2], determined that a universal
Grobner basis of the multiview ideal was given by the maximal minors of a particular
set of matrices, defined by the cameras Ay, ..., A,. This was done by embedding
the map defined by the camera matrices into a diagonal map from P? to (P?)".
Using results from [3], Aholt, Sturmfels and Thomas are able to characterize the
initial ideal of the ideal given by the diagonal map, which also gives a determinantal
description of the initial ideal of the multiview ideal. In general, we consider a
rational map from P"~! to (P*~1)" defined by r x s matrices Ay, ..., A, of rank n.
A similar set of minors turns out to give a universal Grobner basis for the multiview
ideal in this case, as well. The same diagonal embedding can be used to give a

determinatal representation of the generators of the multiview ideal. Finally, we



compute the multigraded Hilbert function of the initial ideal of the multiview ideal

certain cases.

1.4 Outline

The outline of this paper is as follows: Chapter 2 provides a overview of algebraic
geometry, describing basic properties of ideals, Grobner bases, and varieties. Chap-
ter 3 is a description of the fundamental algebraic objects in computer vision, the
projective camera and the epipolar matrix. We describe the connection between the
two objects and include a derivation of the epipolar constraints that provide the
motivation for the next chapter. In Chapter 4, we generalize the criteria for certify-
ing the existence of an epipolar matrix to the case where the cameras are partially
calibrated. In Chapter 5, we describe the structure of the generalized multiview
ideal and its initial ideal. We prove that the maximal minors of a particular set of
matrices is a universal Grobner basis for the multiview ideal. We also compute, for
the class of these rational maps from P"~! into (P')", the multigraded Hilbert func-
tion of the initial ideal with respect to a Z"-grading. In Chapter 6, we summarize

our results and provide possible directions for further research.



Chapter 2

Algebraic Geometry

This chapter provides a brief description of the basic objects in algebraic geometry;

this material is covered in more detail, e.g., in [4].

2.1 Polynomial Rings and Ideals

The primary algebraic objects of study in the field of computer vision are ideals of

polynomial rings k[xy, ..., x,], where k is an algebraically closed field (typically C).

Definition 2.1. An ideal I of a commutative ring R is a subset of R such that for

alla,belTandre R,a+belandrac€ [.

Example 2.1. Given any commutative ring R, the set {0} and the whole ring R

are both ideals. An ideal I that is neither is called a proper ideal.

Example 2.2. Let F be a field, and I an ideal of F' with a nonzero element a. Then
ata=1¢€l,andb-1¢€ [ forall be F. This shows that [ = F.



Example 2.3. Let R = Z, and I the set of all even integers. Then [ is an ideal:
given a,b € I, a+ b is even, and na is even for all integers n € Z. The set of all odd

integers, however, is not an ideal — 3 and 5 are odd, but their sum 8 is not.

Example 2.4. A common construction is to define an ideal in terms of a generating

set. Given a subset S C R, the ideal generated by S is the set

(S) = {Zriai :neN, TiER,aiES}.

i=1

We check that this is an ideal:

(1) two elements of (S) are of the form

n m
E T a; and E r; bz
=1

i=1
which is still a sum of the form

n+m

2 rias
i=1
and is therefore in ().

(2) given any r € R,

is an element of ().



When S = {ay, ..., a,}, then we write
(ay, ... ,an) ={riay+ ... +rpa, : 7 € R}
to denote the ideal generated by S.
Example 2.5. Given two ideals [ and J of R, their sum
I+J ={a+b:aeclbeJ},

their product

IJ : {Zaibi : iEN,aieI,bIGJ},

i=1
and their intersection I N J are all ideals of R.

In this thesis we will concern ourselves with some particular classes of ideals:

Definition 2.2. A proper ideal [ is a prime ideal if for any product ab € I, either

ac€lorbel.

Example 2.6. In Z, the ideal (p) is a prime ideal if and only if |p| is a prime
number: for any product of integers mn, (p) is prime if and only if p divides m or

n; in particular, writing the prime factorization of p as

pP=D1 ... Pk

we see that if (p) is prime, p divides one of the primes p; in its prime factorization.

Then either p or —p is a prime number. Conversely, if |p| is a prime number, then
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given and product mn € (p), |p|, and therefore p, must divide either m or n.

To contrast, (6) is not prime: 2 - 3 € (6) but neither 2 nor 3 are in (6).

Definition 2.3. The radical of an ideal [ is the set

rad [ ={a : a" € I for some n € N}.

It can be verified that rad I is an ideal that contains I. If I = rad I, then [ is a

radical ideal.

Example 2.7. Let R =Z and I = (25). Then rad I = (5): an element of (5) is of
the form 5n for some n € Z, so (5n)? = 25n? € I. Conversely, any element in rad [

must be divisible by 25, and is therefore in (25).

Proposition 2.1. Let I be a prime ideal of R. Then I is a radical ideal: given
a € rad I, there exists some n € N such that a™ € I. But since I is prime, this

shows that a € I, so rad I = 1.

A particularly important structural characteristic of commutative rings is given by

its ideal structure:

Definition 2.4. An ideal I of R is finitely generated if I = (a4, ..., a,) for some

a; € R.
Definition 2.5. A ring R is Noetherian if every ideal I of R is finitely generated.

By appealing to Zorn’s lemma, one can prove the following properties of Noetherian

rings:
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Proposition 2.2. A ring R is Noetherian if and only if the ideals in R satisfy the

ascending chain condition, i.e., for any chain of ideals
LChLCC---CL,Cl,1C...

i R, for some N € N, I,, = 1,1 for alln > N.

Theorem 2.3 (Hilbert’s Basis Theorem). If a ring R is Noetherian, then the poly-

nomial ring R[z] is Noetherian. In particular, Rz, ... z,] is Noetherian.

In practice, this allows us to define any ideal I C Clxy, ... x,] in terms of a finite
generating set {f1, ..., f,}. Note that an ideal I can be defined by more than one

generating set:

Example 2.8. Let R = Clz,y] and I = (x,y). Then it can be checked that

I ={(z+y,z—y) as well

Given an ideal I of a polynomial ring Clxy, ..., x,], it is sometimes necessary to
work with a generating set with more structure. To understand this structure we

must endow our polynomial ring with some additional structure.

2.2  Monomial Ideals and Grobner Bases

We begin by defining a monomial term order in a polynomial ring:

Definition 2.6. A monomial in Clzy, ..., x,] is a polynomial of the form x* =

it ..o a8 where a = (ay, ..., a,) € ZZ,.
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Definition 2.7. A monomial ideal [ is an ideal that is generated by monomials;

ie.

I=(x*, ..., x%)
for some monomials x%. A term order on C[zy, ..., z,] is a total ordering > on
the monomials of C[zy, ..., z,] satisfying the following properties:

(1) if x* = x?, and x” is any monomial, then x* - x7 = x? . x7.

(2) > is a well-ordering on the set of all monomials, i.e., any set of monomials has

a smallest element with respect to .

Here are a few typical examples of term orders:
Example 2.9. In Clz], the only term order is given by 1 <z < 2% <23 < ....

Example 2.10. The lexicographic or dictionary term order >, on Clz1, ..., x,]
is given by setting 1 >jex T2 >iex *** >lew Tn, and then defining x* =, x” if and
only if the leftmost nonzero element of o — 3 is positive. With respect to this term

. 3 5
order, in Clz,y, z], T >1ex Y >lex 25 T° >lex TYZ e 2°.

Example 2.11. The graded lex order >, is defined as follows: given o € Zgo,

define

n
la| = Z Q.
i=1



13

We say that x* =g, x” if and only if |a| > |B], or |a| = |3] and x* =, x*. With

respect to this term order, 2° = griex 3 = griex TYZ.

Example 2.12. The graded reverse lex order ..., is defined as follows:
X% = greviex X° if and only if |a| > |B] or |a| = |3] and the rightmost nonzero entry
of oo — 3 is negative. With respect to this term order, z° = greviez ™ grevier TYZ = grevies

xz2.

By defining a term order on C[zy, ..., z,], we can extend the notion of the degree

of univariate polynomial f(x) to the multivariate case:

Definition 2.8. Let > be a term order on Clzy, ..., z,]. Let
=S
where a; € Z%,. Let x* = max, {x* : i=1, ..., m}. Then a is the multidegree

of f with respect to >, denoted by multideg(f). With this notation, the leading
coefficient of f is the coefficient ¢, of the x* term in f, the leading monomial

of f is x%, and the leading term of f is ¢, x°.

Example 2.13. Let > be the lexicographic term order on Clz, y, z] with z > y > z,

and let
f(xa Y, Z) = 2373 + 3123/ + 433y2 + 5.Z'yZ

Then multideg(f) = (3,0,0), the leading coefficient of f is 2, and the leading term

of fis 223
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Given an ideal I of a polynomial ring C[zy, ..., z,], an important object of study

is the set of leading terms of polynomials in I:

Definition 2.9. Fix a term order > on C[zy, ..., z,,]. The initial ideal of I with

respect to =, denoted by in. (), is the ideal
in (1) := (x* : x% is the leading term of some f € I).

Note that the initial ideal of I is dependent on the term order on Clxy, ..., x,], since
the leading terms of polynomials in I depends on the given term order. Therefore,
we must specify that the initial ideal of I is the initial ideal with respect to a term

order >.

It turns out that the initial ideal gives us the appropriate structure to define a

particular generating set of I: [4]

Definition 2.10. Let I be an ideal of Clxy, ..., z,], with a term order >. A
generating set G = {¢1, ..., g5} of I is a Grébner basis of I with respect to the

term order > if
in, (I) = (x* : x% is a leading term of g; for some 7).

Note that, like the definition of an initial ideal, a set G is a Grobner basis of an ideal
I with respect to a particular term order. However, it is possible for an ideal I to
have multiple Grobner bases with respect to the same term order. This motivates

the following specialization of the above definition:
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Definition 2.11. A reduced Grobner basis for a polynomial ideal I is a Grobner

basis G for I such that
(a) the leading coefficient of each g € G is 1,

(b) for all g € G, no monomial of g lies in (x* : x* is a leading term of some f €

G\ {g})-

Reduced Grébner bases enjoy a number of nice properties:

Proposition 2.4. Let I be a nonempty ideal in Clxy, ..., x,]. Then for a given

monomial order >, I has a unique reduced Grobner basis.

Proposition 2.5. Let I be a nonempty ideal in Clzy, ..., z,]|. Let G = {G.}. be
the collection of all reduced Grobner bases, where = ranges over all possible term

orders of Clxy, ..., x,]. Then G is a finite set.

This second result is noteworthy because when n > 2, there are infinitely many
possible term orders on Clxy, ..., x,], but across all of these term orders, there are
only finitely many possible reduced Grobner bases. This fact motivates the following

definition:

Definition 2.12. Let I be a nonempty polynomial ideal, and let Gy, ..., G be the

collection of all reduced Grobner bases of I. Then

is a universal Grobner basis of /.
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The universal Grobner basis of an ideal has an equivalent definition that is suggested

by its name:

Definition 2.13. A subset G of a nonempty polynomial ideal I is a universal
Grobner basis of [ if it is a Grobner basis of I with respect to every term order

on Clzy, ..., x,).

2.3 Affine Varieties

The fundamental geometric objects of interest are particular subsets of C™ called

affine varieties. These are subsets of affine space:

Definition 2.14. Let n be a positive integer. Then the n-dimensional affine

space is the set
C" = {(a1, ..., an) : a; € C}.

Affine varieties are subsets of C™ that are defined by polynomials:

Definition 2.15. Let fi, ..., fs be polynomials in Clxy, ..., x,]. The affine va-
riety defined by fi, ..., fs is the set
V={aeC": fi(a) = ... = fs(a) =0}.

This set is denoted by V(fi, ..., fs).
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Example 2.14. The set V = {(a,b) € C* : a = 0} is the variety defined by the

polynomial f(x,y) = z. In the notation above, V' = V(x).

Example 2.15. As a generalization of the above example, given a point a =

(ay, ..., ay) € C, the set {(a1, ..., an)} =V(r1 — a1, 29 — ag, ..., Tp — ay).

Example 2.16. The set V = {(z,y) € C* : y — 2? = 0} is a variety defined by

the polynomial f(z,y) = y — 2?; in R? the subset V is a parabola defined by the

equation y = x2.

Sometimes, we would like to define an affine variety in terms of an ideal:
Definition 2.16. The affine variety of an ideal I C Clzy, ..., z,] is the set
V(I)={aeC": f(a)=0forall f eI}

Note that if @ € C", and fi, ..., fs are polynomials in C[zy, ..., x,] such that
fi(a) =0 for all 4, then hy f; + ... + hs fs is a polynomial that vanishes at a for all
polynomials h;. This allows us to interchange the variety of an ideal and the variety

of its generating set:
Lemma 2.6. Let I = (f1, ..., fs). Then V(I) =V(f1, ..., fs).

Proof. 1f a € V(I), then every polynomial in [ vanishes at a; in particular, f;
vanishes at a for each 7, s0o a € V(fy, ..., fs). Conversely, if a € V(f1, ..., fs), and

every polynomial g € I is of the form
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g:h1f1+ +hsf57
then ¢ vanishes at a, which shows that a € V(I). O
This lemma is useful in proving the following properties of varieties:

Lemma 2.7. Let V = V(f, ..., fi) and W = V(g1, ..., gm) be affine varieties.
Then VNW and V UW are also affine varieties.

The foundation of algebraic geometry is the correspondence between these geometric
structure of C™ and the algebraic structure of the polynomial ring Clz1, ..., z,]. In
the same way that a variety is defined in terms of an ideal, an ideal can be defined

in terms of a variety:
Definition 2.17. Let S be a subset of C". Then the ideal defined by S is the set
I(S)={f€Clxy, ..., z,) : f(a)=0forall a € S}.

It is clear that I(S) is an ideal: given f,g € I(S) and h € Clxy, ..., x,], f + ¢ and

hf will vanish on S as well.
Example 2.17. Let S = {(aq, ..., a,)} C C". Then I(S) = (x1 —ay, ..., Ty, —ay).

Note that in this case, S is a variety: in particular, S = V(I), where I = (z; —
ai, ..., Tn—ayp). With this notation, we have that I(V([)) = I, which suggests that

this is true in general. However, this isn’t the case:

Example 2.18. Let S = {0} C C. Then S = V(z?), but I(S) = (z).
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It is however possible to say the following about the relationship between the oper-

ations V and I:
Proposition 2.8. For any ideal I C Clxy, ... z,)|, I CL(V(I)).
Proof. Let f € I. Then f vanishes on every point in V(I), so f € I(V(I)). O
Another important property relating V and I is reverse inclusion:
Proposition 2.9.
(1) Let I C J be two ideals in Clxy, ..., x,]. Then V(J) C V(I).
(2) Let V .C W be two varieties in C". Then I(W) C I(V).
Proof.

(1) If @ is a point in V(J), then every polynomial in J will vanish on a; in partic-

ular, every polynomial in / will vanish on a, so a € V(I).
(2) Every polynomial that vanishes on W will vanish on V, so I(W) C I(V).
O

Based on this information, it is clear that there is some sort of correspondence
between affine varieties in C" and ideals in C[zy, ..., x,]. The nature of this corre-

spondence is laid out in Hilbert’s Nullstellensatz:
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Theorem 2.10 (Hilbert’s Nullstellensatz). Let I be an ideal of Clzy, ..., x,]. Then

I(V(I)) =rad I; in particular, there is a one-to-one correspondence
{affine varieties of C*} <— {radical ideals of Clxy, ..., x,]}

given by the operations I and V.

As a consequence of the Nullstellensatz, geometric information about a variety V'
can be encoded as algebraic information about an ideal I, and vice versa: one such

example follows from a class of varieties called irreducible varieties:

Definition 2.18. A variety V is called irreducible if V' cannot be written as a

union V=V, U V5 where ) CV; C V.

Theorem 2.11. A variety V is irreducible if and only if I(V') is a prime ideal.

2.4 Projective Varieties

The results in the previous section illustrate the correspondence between ideals of
Clxy, ..., x,] and subsets in C". Similar results can be obtained when considering
a different ambient space from C", called projective space. Before defining complex

projective space, we first consider its real counterpart, the real projective space:

Definition 2.19. The real projective plane, denoted by P?(R), is the set of all

lines in R? that pass through the origin (0, 0,0).
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The elements of P(R) are lines, but a more useful characterization of these elements

comes from the following idea: we let H = {(x,y,1) € R?*}, and H,, = {(z,9,0) €

R?}.

A line L in P?(R) will either pass through H in exactly one point, or will be

contained in H.,. In each case, we can associate L to a point in R? in a particular

way:

(a)

if L intersects H, then it intersects H in a unique point (a,b,1). We can
identify (a,b,1) with the point (a,b) in R%. Conversely, given any (a,b) € R?,
there exists a unique line L in R3 that passes through the origin and (a, b, 1);

this gives us a bijective correspondence

{lines in P*(R) that intersect H} +— R

if L C H., then L is uniquely determined the origin and another point (a, b, 0)
on L where a and b are not both 0. In particular, if L intersects the line y = 1
in H,, then it does so at exactly one point (a,1,0). Conversely, exactly
one line L in H,, that passes through the origin will pass through the point
(a,1,0). We can identify these points with the real line R. This leaves out one
line in P?(R) in H.: the line that passes through the origin and (1,0,0). All

together, this gives us a bijective correspondence

{lines in P*(R) contained in H,} <— R U {(1,0,0)}.

Therefore, we can more concretely represent the elements of P?(R) as follows:
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P*(R) = {(a,b,1) € R*} U {(a,1,0) € R*} U{(1,0,0)} =R?* UR U {(1,0,0)}

The points in R U{(1,0,0)} are often called the points at infinity, which alludes to
the geometric realization of the real projective plane. However, our ultimate goal is
to define complex projective space, so we must consider another, purely algebraic

construction of the projective plane:

Definition 2.20. Define an equivalence relation ~ on R*\ {(0,0,0)} as follows:
(a, b, ¢c) ~ (d, b, ) <= (Na, A\b, \¢) = (d',V, ) for some X € R\ {0}.

Define the real projective plane P?(R) to be the set of all equivalence classes
(R3\ {(0,0,0)})/ ~. The elements of P?(R) are called homogeneous coordinates
and are denoted by [a : b : ¢] where (a,b,c) # (0,0,0).

Naturally, we must check that these two definitions produce the same set:

Proposition 2.12. There exists a bijective correspondence

{lines in R® that pass through the origin} +— {[a : b : c] : (a, b, ¢) # (0, 0, 0)}.
Proof. We correspond to each line in R? that passes through the origin a point in
(a,b,c) € R3, where (a,b,c) # (0,0,0). This gives a map

{lines in R? that pass through the origin} — {[a : b: | : (a, b, ¢) # (0, 0, 0)}
(a, b, ) — la b |

The inverse map is defined as follows: given a homogeneous coordinate [a : b : ¢], if
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c # 0, map to the line corresponding to (2, 1277 1); otherwise, if ¢ = 0 and b # 0, map
to the line corresponding to (%, 1, 0), and if ¢, b = 0, map to the line corresponding
to (1, 0, 0). Under the equivalence relation ~, this is a well-defined inverse, which

exhibits the bijective correspondence. O]

Note that the algebraic construction of P*(R) is readily generalizable to both dif-
ferent fields and different dimensions. We will mimic this construction to define the
complex projective space that will serve as the ambient space for the results in this

thesis:

Definition 2.21. Let n > 1. Define an equivalence relation ~ on the set C"™'\ {0}

by setting
(ag, ..., an) ~ (bo, ..., b)) <= (Nag, ..., Aa,) = (bo, ..., b,) for some X € C\ {0}.

The set (C"*!\ {0})/ ~ of equivalence classes under ~ is the n-dimensional

projective space, denoted by P".

Example 2.19. Let n > 1, and let Uy = {[ap : a1 : ... : a,] € P" : a9 # 0}. Note
that given [ag : a1 : ... : a,] € Uy,
l[ag : ay @ ...t ap] ~ . ,
Qo Qo
so we can write Uy = {[1 : a1 : ... : a,] € P"}. Then P" can be written as a

disjoint union

P"=UyU{[0:a;:...:a,)€P"},
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where the elements are in Uy are in bijective correspondence with the elements of
n-dimensional affine space C", and the elements of {[0 : a; : ... : a,] € P"} are in

bijective correspondence with the elements of P*~!; then we can write
P"=C" U Pt
Note that we can mimic this construction with
U={lao : ... a;—1 :1:a;51:...:a, €P"}
for 0 <7 <mn, and
P"=Uy, U U, U...UU,.

This shows that P™ can be thought of as the union of n + 1 n-dimensional affine

spaces.

We would like to define a projective analog to the affine varieties in the previous
section, but we cannot define them in terms of polynomials in exactly the same way:
for a general polynomial f € Clzy, ..., x,] and a general element [ag : a3 : ... :

an) € P,
flag, ..., an) # f(Xag, ..., Aay)

for A € C. Then a general polynomial f will not be well-defined as a function on
P". To make sense of how a projective variety should be defined, we require that

our polynomials are homogeneous:
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Definition 2.22. Write a polynomial f € Clxy, ..., z,] as

flxo, ..., xp) = anxo‘.

«
Then f is homogeneous of degree d if |a| = d for all monomials x* in f.
Note that given a homogeneous polynomial f of degree d,

f(hag, ..., Nay) = X f(ag, ..., a,)

which shows that while f is still not a well-defined function on P", f(ao, ..., a,) =0
for every representation of the homogeneous coordinate [ag : ... : a,]. Therefore,

it makes sense to define a variety in terms of these homogeneous polynomials:

Definition 2.23. Let fi, ..., fin € Clxo, ..., x,] be homogeneous polynomials.

Then the projective variety V defined by fi, ... f,, is the set
V(fi, ooy f) ={lao : ... an] €P" ¢ fi(ag, ..., an) = ... = fumlao, ..., a,) = 0}.

Given an ideal I of C[xy, ..., x,] generated by homogeneous polynomials, the pro-

jective variety V defined by I is defined as the set
V() ={[ao : ... 1a,) €P" : f(ag, ..., a,) =0forall fel}.
Definition 2.24. Given a projective variety V' in P", the ideal of V is
I(V)=(f €Clxo, ..., zs) : flag, ..., a,)=0forall [ap : ... : a,] € V).

An important invariant of both projective and affine varieties is the degree:
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Definition 2.25. The degree of a projective variety V' C P" is the number of
points in the intersection of V' with a generic linear subspace L whose codimension

is the dimension of V.
The following is a useful result regarding the degree of a projective variety:

Lemma 2.13. If V| and V5 are two projective varieties in P of dimension d and

n — d, respectively, then Vi N Vy # (.

2.5 The Hilbert Function

Finally, we define the Hilbert function, an important function associated to a ho-

mogeneous ideal of a polynomial ring.

Definition 2.26. Let R be a commutative ring and G an abelian semigroup. R is

a G-graded ring if

R=E R,

geG

where for all g,h € G, r € R; and s € Ry, 15 € Ryp,.

Example 2.20. Let R = C[z] and G = N. Then the degree gives an N-grading on
R:

Cle]=Ry@® R & ...

where R; is the set of all polynomials in C|x] with degree i.
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Example 2.21. The polynomial ring C[z;; : i € [r], j € [n]] admits an N"-grading
in the following way: let v = (uq, ..., u,) € N*, a = (o;), and define

R, = {Xa : Zaij = u; for each j}.

=1

Then

Clay i€ [r], j € [n]] = D R

ueNn?

The Hilbert function is defined in terms of a homogeneous ideal of a graded poly-

nomial ring:

Definition 2.27. Let C[zy, ..., z,] be a G-graded polynomial ring, and I a homo-
geneous ideal. Then the Hilbert function of this ideal is a function H : G — N
where #(g) counts the number of elements of R, not in I ( equivalently, the number

of elements of R, that do not reduce to 0 in the quotient ring Clxzy, ..., x,]/1).
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Chapter 3

Computer Vision

3.1 The Camera Model

The description of the camera model and epipolar geometry are taken from Hartley

and Zisserman’s book on computer vision [§].

The process of image formation is one of constructing a two-dimensional represen-
tation of a three-dimensional space. It is therefore natural to think of a camera as a
projection from three-dimensional space onto a two-dimensional image. The camera
model is formed by central projection, in which a ray is drawn from a 3D world point
through a fixed point in space, called the center of projection. This ray intersects
a fixed plane in space, called the image plane. The intersection of the ray with the
image plane represents the image of the world point. This model is in accord with
our intuitive model of a camera, in which a ray of light from a world point passes

through the lens of a camera and is captured as a single point on the image.
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AY
image plane

camera center—» C

Y
N

Figure 3.1: A camera model formed by central projection. A world point X projects
down to an image point x in the image plane.

In this setting, world points will be represented by points in the projective space P?
of the form [z : y : 2 : 1], and image points by points in the projective plane P?
of the form [z : y : 1]. Central projection is therefore a projection map from P? to

P2. We can realize a projective camera as a matrix as follows:

Example 3.1. Fix the center of projection to be the origin [0 : 0 : 0 : 1] in P3.
For a given x,y, 2 € R, the world line {[z : y : 2z : t| : t € R} in P? projects down
to the image point [z : y : z] € P? under this mapping. This is in fact a linear map
P : P> — P? that can be represented by a real 3 x 4 matrix with block structure
P = [I3]03], where I3 is the 3 x 3 identity matrix and 03 is the zero vector in R3.

We can verify this by observing that
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s
1000 T
y
0100 = |y
z
0010 2
t

In general, the center of projection and other intrinsic features of the camera, like
the aspect ratio or skew, might change. But these changes can be expressed via a

linear transformation on the set of image coordinates:

Example 3.2. If we consider a more general 3 x 4 matrix

10 p, O
P=101p, 0],

00 1 0
where p,, p, € R, then

x

T+ 2Py
Y

P = | y+zp, |>

z

z
t

which has a natural interpretation as a projection map paired with a translation:
the first example assumes that the origin [0 : 0 : 0 : 1] is mapped to the origin in
the image plane; in general, it might be mapped to some other point of the form

[pz © py @ 1]. This corresponds to a projection and a translation
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T
T+ 2Py
Yy
— | y+2zp,
z
Z
t

which is a transformation given by the matrix P above.

Relaxing the conditions on other intrinsic properties of the camera give rise to similar

relaxations on the form of P. A general projective camera is defined as follows:

Definition 3.1. A projective camera P is a real 3 x 4 matrix of rank 3 of the
form P = [A|t], where A is an invertible 3 x 3 matrix and t € R?, and P is defined

up to scale; i.e., we consider [A|v] and A [A|t] to be the same for nonzero A € R.

A more useful characterization of the projective camera matrix is given in chapter

6 of Hartley and Zisserman [g]:
Proposition 3.1. A general projective camera P can be written as
P =K|[R|t]

where R is a 3 X 3 rotation matriz and K is an invertible matriz that encodes the

calibration of the camera.
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3.2 Epipolar Constraints

One of the fundamental problems in computer vision is to understand the intrinsic
geometry of a system of n projective cameras. We are interested in the case where
n = 2: given two projective cameras P; and P,, we wish to understand the intrinsic
geometry between P, and P, given a set of m pairs of image points taken by the
two cameras. More precisely, given m world points Xy, ..., X,,, let P, X; = z; and
P, X; = y; for each 1 < ¢ < m, and consider the pairs (1, v1), ..., (Tm, Ym). It
turns out that for m > 7, these pairs of image points give rise to a set of constraints
on the entries of P, and P; called epipolar constraints. These constraints are
derived from the setting illustrated in Figure [3.2] In the figure, X is a world point
whose images under P, and P, are x; and Xs, respectively. The centers of these
cameras are at ('} and Cy. The epipolar plane 7 formed by x; and x5 is the plane
formed by the lines passing through the points {X, x1, C1} and {X, x5, Cz2}. In this

setting we can define the following:

Definition 3.2. The baseline between two cameras PP, and P is the line between
their centers. The epipole is the point of intersection of the baseline with the image
plane. In Figure [3.2] the epipoles are e; and e; — note that these are the image of

C; in the first view and C; in the second, respectively.
Definition 3.3. An epipolar plane is a plane containing the baseline.

Definition 3.4. An epipolar line is the intersection of an epipolar plane with the
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Figure 3.2: The lines between a world point X and the camera centers C; and C,
form an epipolar plane 7.

image plane. These lines will define the correspondence between points on the image

plane.

From Figure [3.2] to each point x in one of the image planes, we can construct
an epipolar line in the second image by taking the line that passes through the
corresponding image point X’ and the epipole in the other image plane. This corre-
spondence is encoded in a real 3 x 3 matrix called the fundamental matrix, which
turns out to encode the geometry relating the two cameras. Hartley and Zisserman

outline a derivation of the fundmamental matrix in [§, Chapter 9]:

Let x be a point in the first image plane. The first camera center C; and this point
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x form a ray that back-projects into the set of world points, points X that satisfy

the equation P; X = x. The solutions to this equation are of the form
{P1+X+ >\Cl A ER} U {Cl}

where Pj" is the psuedo-inverse of P, (so P, P;” = I). The images of the points
P;"x and C; in the second image plane are P» P x and P, Cy, respectively. The

epipolar line 1 in the second image plane is the line joining these points; therefore,
I =(P,C,) x (P, P}'x)
which, since P, C; is the epipole in the second image plane e;, we can rewrite as
I = [es]x (P P)x,
and from this we obtain the fundamental matrix F"

Definition 3.5. Let P, = K [R;|t;] and P, = K;[Ry|t2] be two projective cam-
eras, and let e; and ey be the epipoles in the image planes of P, and P,, respectively.

Then the fundamental matrix F of P, and P; is the matrix
F: [GQ]X P2P+,

where for a given vector v = (v, v, v3) € R3,
0 —as a9
[U] X = as 0 —an s

—a9 aq 0
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and P* is the psuedo-inverse of P;.

Since projective cameras are defined up to scale, the same applies to the funda-
mental matrix; we can think of it as an element of P®. For our purposes, there are
several results in [8, Chapter 9] which provide more useful characterizations of the

fundamental matrix:

Proposition 3.2. Let F be the set of all fundamental matrices in P®. Then F is

the set of all real 3 x 3 matrices of rank 2, up to scale.

Proposition 3.3. With the same notation as in Definition 3.5, F = K,;* B K,
where B is a real 3 x 3 matriz of rank 2 such that both of its nonzero singular

values are equal.

Example 3.3. Let P, = [[3]0] and P, = [Ry|ty]. Then Ky = K; = I3, and the
fundamental matrix is the matrix B, in the notation of Proposition 3.3. In this case,
the cameras P, and P, are said to be calibrated and the fundamental matrix F' is

called an essential matrix, usually denoted by B.

3.3 The Set of Fundamental and Essential Matrices

We can think of a 3 x 3 matrix, defined up to scale, as an element of the projective
space P, In particular, a fundamental matrix F' can be thought of as an element of

P8. We can consider the set of fundamental matrices:
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Definition 3.6. The set of fundamental matrices in P® is denoted by F.
By Proposition 3.2,

F ={F ¢ P® : F has rank 2},

which is the difference of two projective varieties, or a quasi-projective variety: if

we consider P® to be the set of all 3 x 3 matrices, defined up to scale, then

F =P\ {F € P® : F has rank 1}
where the latter set is the variety defined by the 2-minors of a 3 x 3 matrix.

Similarly, essential matrices can be thought of as real 3 x 3 matrices, defined up to
scale, and therefore as elements of P®. Let & be the set of all essential matrices in
P8, Then £ C F. In fact, in [5], Demazure showed that £ can be described as the

solution set of polynomial equations:
Proposition 3.4. Let £ be the set of all essential matrices in P%. Then
E={EecP® . 2EE"E —tr(EE")E =0, det E = 0}.

This is a projective variety in P let

To T1 T2

Te X7 T8



Then & is defined by the polynomials p1, ... pio € Clzo, ...

P1 P2 P3

xg], where

s ops pe | =2XXTX —tr(XXT)X

b7 Ps P9

and p1gp = det X.

37
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Chapter 4

Partially Calibrated Epipolar Matrices

4.1 Motivation

A fundamental problem in computer vision is the following: given m world points
X1, X, ..., X, and m pairs of corresponding image points {(z1, ¥1), - - -, (Tm, Ym)},
does there exist a pair of projective cameras Py, P, such that P, X; = x; and
P X; =y, forv = 1,2, ..., m? In Chapter 3, it was shown that the existence of
these cameras is equivalent to the existence of a real 3 x 3 matrix F, called the

fundamental matrix, satisfying the equations

yl Fa;=0 (4.1)

for i = 1,2, ..., m. These equations are called the epipolar constraints. In [1I,
Agarwal, Lee, Sturmfels and Thomas reframe these constraints in the context of

linear algebra: given the m pairs of point correspondences above, where x; = [z :
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Tio ¢ 1T and y; = [ya @ vz @ 1]7, define the matrix Z to be the m x 9 matrix

b row is

whose 7

Y, Q@ x; = [yz‘l Tilt * YiaTi2 Yl © YieTil ¢ Yia T2 Y2 L X1 - T2 - 1]-

Then Z defines a linear transformation on P®, which encodes the epipolar constraints

in the following way:

Lemma 4.1.
(a) there exists a fundamental matriz F if and only if ker Z N F is nonempty.
(b) there exists an essential matriz E if and only if ker Z N & is nonempty.

Proof. We represent a 3 x 3 matrix F' as a column vector by concatenating the
rows and taking the transpose: F' = [aj; : a2 @ a13 @ Qo1 @ Qg © Go3 : a3 : agy :
azs)’ € P8, Then the i'" row of Z F is
3
(i © ;) F = Z Z Yij Tik Ajk
j=1 k=1

where we let y;3 = x;3 = 1. The corresponding epipolar constraint is

11 a2 a1 T41
3 7 3 3
T'poe, = 1 =
Yy 'r; = [yﬂ Y12 ] as1 A9y (93 Tio | = Yij Tik Ak,
j=1 k=1
a31 a3z G33 1

which shows that Z F' = 0 if and only if F satisfies each epipolar constraint y! F z; =

0. Equivalently, a fundamental matrix F' (or essential matrix F) exists if and only
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ifker Z NF #0 (or ker Z NE #0). O

As a consequence of this observation, the problem of certifying the existence of a
fundamental matrix reduces to examining the intersection between the linear sub-
space ker Z and the quasi-projective variety F. Similarly, to determine whether an
essential matrix exists, we consider the intersection between ker Z and the projec-
tive variety £. Intuitively, the lower the rank of Z, the more likely it is that this
intersection is nonempty. The strategy presented in [I] is to condition on the rank

of Z:
Theorem 4.2. [frank Z <5, then a fundamental matriz F' exists.

Theorem 4.3. Ifrank Z < 4, then an essential matriz E exists.

4.2 Generalizations — Partially Calibrated Epipolar Matri-

ces

One way the difference between Theorem 4.2 and 4.3 can be interpreted is as a func-
tion of how much is known about the projective cameras — recall that an essential
matrix E represents a pair of projective cameras that are totally calibrated. It is
therefore natural to consider when a fundamental matrix where some of the calibra-

tion information is known. We will call these matrices partially calibrated epipolar
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matrices. In general, we assume that a pair of cameras is partially calibrated when
we know some information about the calibration of the cameras, but not complete
information. To precisely express what this means in terms of the corresponding

epipolar matrix, recall that a general fundamental matrix F' admits a factorization

F=K;"BK,, (4.2)

where B is an essential matrix, and K; and K, are invertible upper triangular
matrices that encode information about the position and skew of each camera. When
we assume no knowledge about the calibration of the cameras, we can only assume
that the corresponding calibration matrices K; and K, are invertible and upper
triangular. When the cameras are both fully calibrated, we can assume that K; and
K, are both the identity matrix, which means that the position and skew of the

cameras are normalized.

Naturally, we can examine the case where K; and K5 are not necessarily the identity
matrix, but we have information about their structure. There are a variety of
assumptions we can make about the structure of K; and K5, but we will focus on
the case where one of K7 or K5 is the identity, and the other is an invertible upper

triangular matrix of the form
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z 0 a
K=10 y b
0 0 1

This particular characterization is, in fact, a general characterization of partial cal-

ibration:

Theorem 4.4. Suppose F' is a fundamental matriz. Then there exist an essential

matriz B and a calibration matriz K such that F = K~T B.
Proof. Let F' be a fundamental matrix. Then
F =K 'BK,

where K; and K, are invertible upper triangular matrices, and B is an essential

matrix, so
B=1t|x R
for some vector ¢ € R? and rotation matrix R. Then using the fact that
[t] M = M~T M),
for any invertible matrix M,
F=K"BK,=K;"T[t]«(RKy) = K;T(RK,) T[(RK) " t]«.

The matrix (R K3)~7 admits a unique LQ decomposition (R K;)~7 = LQ where L
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is a lower triangular matrix with positive diagonal and () is a rotation matrix. Then

letting U = L™T,
KITRKy) T =K"LQ =K"U Q= (K,U)"Q,

so F'= (KiU)"TQ[(RKy) 't]x. Since @, and therefore, QT is invertible, there

exists some vector ¢’ € R3 such that Q7 ¢’ = (R K,)~'t. Then
QURI,) ]« = QQ" ']« =[]« Q,
S0
F=(FU)"[txQ,

where K U is an invertible upper triangular matrix, and () is a rotation matrix, so
[t']« @ is an essential matrix. This shows that every fundamental matrix F' can be
written as a partially calibrated matrix of the form K7 B, where K is an invertible

upper triangular matrix and B is an essential matrix. O

Note that the matrix K; U is not necessary a matrix of the form

r 0 «a
0 y b
0 0 1

In fact, a computation can show that this only happens if K; and K, are both

matrices of these form. Therefore, this is a natural generalization of an essential
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matrix.

4.3 A Diagonal Calibration Matrix

As an example, let I = K B where B is an essential matrix and K be a diagonal

matrix:

a 0 0
K=1015b0
0 01

where a,b # 0. The epipolar constraints require that

a 00
yiTFwi = [yil Yi2 1] 0 b 0| Bx= [ayn byio 1] Bz, =0
0 01

fori = 1,2, ..., m. For each i, let yf’b = |ay;1 : by : 1] and define a new matrix

Zqp where the i*™ row is given by
(?J?’b)T ® i = [ayin Ta ¢ aya T2 ¢ aYa DY Ta : by T by ¢ g ¢ w1
We are able to rewrite the epipolar constraint in terms of this new matrix Z,:

Lemma 4.5. A fundamental matric F' = K B, where K = diag(a,b,1) and B is
essential, exists that satisfies the epipolar constraints given by Z if and only if an

essential matriz B exists that satisfies the epipolar constraints given by Zgy.
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Proof. Based on the computation above, F' = K B, Z F = 0ifand only if Z,, B = 0,

so ker Z N F is nonempty if and only if ker Z,, N £ is nonempty. O

To understand the relationship between Z and Z,;, we write Z in terms of its

columns:

Z = Cl Cg Cg

This allows us to write Z,; in terms of the same columns:

Za,b: CLCl aCz &03 bC4 bC5 bC6 07 08 Cg

To compute the rank of Z,;, we wish to compute the minors of Z,;, which are in

fact characterized by the minors of Z in the following way:

Proposition 4.6. For k =1, ...,9, a k-minor of Z,, will be a scalar multiple of

the determinant of the corresponding k-minor in Z.

Proof. In general, a k-minor of Z, ; is formed by taking k colums of Z, ; and removing
m — k rows. Each column of Z,; is a scalar multiple of the corresponding column
in Z, so the determinant of the minor will be a scalar multiple of the determinant

of the corresponding minor in Z. [

Example 4.1. Consider a 6-minor of Z,; formed by taking the first six columns
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a01 GCQ CLCg bO4 bC5 bC6

and removing m — 6 rows. The determinant of this matrix is a® b3 A, where A is the
determinant of the corresponding 6-minor in Z (i.e., the 6-minor formed taking the

first six columns of Z and removing the same m — 6 rows).
Therefore, we know the following about rank Z,:
Corollary 4.7. rank Z,, = rank Z.

Proof. Since a and b are nonzero, any given k-minor in Z,; will have zero de-
terminant if and only if the corresponding k-minor in Z (i.e., the one formed by
intersecting the same rows and columns as the ones used to form the k-minor in

Z,p) has zero determinant.

If rank Z = k, then there exists a k-minor of Z with zero determinant. The cor-
responding k-minor in Z,; will also have zero determinant, so rank Z,;, > k. Ad-
ditionally, all j-minors of Z,;, where j > k, will have nonzero determinant, since
the corresponding j-minors of Z will have nonzero determinant. Therefore, rank

Zap =k = rank 7. O
Now we can characterize when a fundamental matrix F = K B exists:

Theorem 4.8. A fundamental matrix of the form F' = K B, where K is a diagonal

matrix and B is an essential matriz, exists with respect to Z if and only if an
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essential matriz B exists with respect to Z. In particular, when rank Z < 4, such a

fundamental matriz F exists.

4.4 The Parameter Space

We now relax the constraints on the calibration matrix K to our original definition
of a partially calibrated epipolar matrix: let ' = K B, where B is an essential

matrix and K is of the form

a 0 0
K=101b 0],
c d 1
where a,b # 0. The epipolar constraints require that for i =1, ..., m,

a 0 0
vl Foi=1lyn vy 21 |0 b 0| Bri=[ayn+c:bya+d:1]Bx;=0

c d 1

so by letting
(yI)" = [aya +c : by +d : 1],

the constraint above is equivalent to requiring that (y)” B x; = 0 for each i. Define

h

Zx to be the m x 9 matrix whose i*" row is given by (y%)” @ ;. Then the columns

of Zx can be written in terms of the columns of Z:
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i = CLZl + CZ7 . bZ4 + dZ7 c Z7 Zg Zg

We take the same approach as in the previous section: let o C [9], 7 C [m], and let
My »» be the minor of Z formed by intersecting the columns in o and the rows in

7. Then in general,

MZK,O,T: aC’i+cC’i+6 ij+de+3 Ck

where i € {1,2,3}, 7 € {4,5,6}, and k € {7,8,9}. Suppose |o| = |7| = n, where o
contains e; elements from {1,2,3}, es elements from {4,5,6}, and e3 elements from
{7,8,9} (so e; +ex+e3 =n). Note that det My, ,, is a homogeneous polynomial of
degree n — e3. Moreover, by the multilinearity of the determinant, the coefficients
of this polynomial are of the form det My, ,, where ¢’ ranges over the possible
combinations of columns that can be formed from the columns in My, ,,. This lets

us prove the following:
Proposition 4.9. rank Zx < rank 7.

Proof. The determinant of any k-minor Mz, - can be thought of as a polynomial in
Cla, b, ¢, d] whose coefficients are the determinants of certain k-minors of Z. There-

fore, if all the k-minors of Z have zero determinant, so do all the k-minors of Zg,
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so rank Zx < rank Z. O

Naturally, we would like to know when this inequality is strict, or whether the
inequality is actually an equality as in the previous section. To answer this question

we take an alternative approach: let

a

K/

I
S8

K’ is an invertible 9 x 9 matrix (since a,b,1 # 0) and Zx = Z K’. Since K’ is

invertible,

rank Zx = rank Z K = rank Z

and ker Zx = ker(Z K’). The condition in Lemma 4.1 is therefore equivalent to

checking

ker Zx N € =%ker(ZK') N E.
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A matrix B is in this intersection if and only if
(ZK'YB=Z(K'(B))=0.

If we let K'(€£) = {K'(E) : E € £}, then this means we must check the intersection

kerZ N K'(E).

Lemma 4.10. For fized values of a,b,c,d such that K' is invertible, K'(€) is a

projective variety in PS.
Proof. Recall that £ is a variety given by the equations

Po P1 P2

s py ps | =2EE"E—tx(EE")E

Pe Pr D8
and pg = det(E). Fori =0,...,9, Let ¢i(x) = p;((K") "' x), where x = {z1, 79, ..., 79}
Then ¢; (K’ E) = p; (E), so the ¢; vanish on K’ E if and only if the p; vanish on E,

or equivalently, if and only if £ € £. This shows that K'(£) = V(qo, ..., q9)- O

For fixed values of a,b,c,d, it makes sense to think of K’(£) as a variety in P,
but in reality we are considering a family of projective varieties K'(€) that are

parametrized by lower triangular matrices
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which can be thought of as points K =[a : b : ¢ : d : ¢] € P*. In this case, we are

interested in the parameter space
C={(K,E): K'eP'EcK'E)}

We are therefore interested in the existence of a pair (K, E) € P* x P®, where K
is defined by a matrix of the form above and £ € K(&). In particular, we are

interested in determining whether the set
K=C\{(K,E) : KecP'abe=0,FE € K'(€)}

is empty. To answer this question we use the following property of parameter spaces

from [7]:

Proposition 4.11. Suppose X C P" is a projective variety, and {V;} is a family of
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projective varieties in P™ parametrized by b € P™. Then
{beB:XNV,#0}
1s a subvariety of P™.
In particular, the set
{KeP': ker Z N K(E)# 0}

is a subvariety of P*, and we are interested in finding an element in the quasi-

projective variety
B={KeP' kerZ N K(E)#D\{K P : ker Z N K(E) # 0, abe = 0},

which corresponds to the set of invertible upper triangular matrices K. A compu-

tation in Macaulay?2 [6] reveals the following:

Proposition 4.12. For generic matrices Z of rank 5, the Zariski closure of B is

P

The computation involves taking the ideal generated by ker Z, for a generic Z of
rank 5, and the equations defining the ideal I(K(£)), and computing the elimination

ideal in Cla, b, ¢, d, e]. Therefore, we can conclude the following:

Theorem 4.13. For generic matrices Z, when rank Z < 5, a fundamental matriz

of the form F' = K B, where B is an essential matriz and



exists with respect to Z.

K =

a 0 0
0 b 0
c d 1

)

23
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Chapter 5

The Multiview Ideal in P"

5.1 Motivation

In this chapter, we generalize results regarding the multiview variety. Let Aq, ..., A,
be a system of projective cameras. These can be thought of as real 3 x 4 matrices

of rank 3. Given these matrices, we can consider the rational map

¢ PP — P2 x P2x ... xP?
(5.1)
x — (A1x, Aox, ..., A,X)

Let V4 = ¢(P3) be the closure of the image of ¢ and J4 = I(Vy) its ideal in the
polynomial ring Clx;, y;, 2z; : @ € [n]]. V4 and Ju are called the multiview variety
and multiview ideal, respectively. In [2], Aholt, Sturmfels and Thomas characterize
the generators and the Hilbert function of the initial ideal in, J4, with respect to

the term order
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Ty > Tog > ... > Tp > Y1 >~ ... > Yp ™ 21 = ... > Zn

for sufficiently generic cameras Ay, ..., A,. Their method was to express V4 as the
diagonal embedding of P? into (P*)", obtain a set of generators for in, J4 via elimi-
nation, and prove that the resulting generators have a determinantal representation.

We will generalize these results to the class of rational maps

¢ Pt — Pl x Pl ox 0 x P

(5.2)
x > (Aix, Aox, ..., AuX)
where r > s and the A; are sufficiently generic real s x r matrices of rank s.
5.2 An Example: P? into (P!)"
The prototype for our analysis will be based on rational maps of the form
¢p: P2 — PLx Pt x ... xP!
(5.3)

x — (A1x, Aox, ..., Ayx)
where the A; are real 2 x 3 matrices of rank 2. In this case, the multiview ideal
M, is an ideal in C[x;,y; : i = 1, ... ,n], and is prime because V is an irreducible

variety. Given a set o = {0y, ... ,05} C [n], we consider the matrix
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Asy Poy 0 ... O
A,, 0 p,, - 0
A, = ’ ’ (5.4)
A,, 0 ... 0 p,
where p; := [z; y;]T. This is a 25 X (s + 3) matrix. Similar to the analysis in [2],

we begin by giving a determinantal representation of the multiview ideal:
Lemma 5.1. The mazimal minors of A, for |o| > 3 lie in the prime ideal J4.

Proof. If p = (p1,...,pn) € (CH™ is a point in ¢(P?), then there are some q €
C3\ {0} and cy,...,c, € C\ {0} such that A;q = c;p; for i =1,2,... n. Then the
columns of A, are linearly dependent. For |o| > 3, A, has at least as many rows as

columns, so the maximal minors of A, must vanish at p. O

This lemma gives us a useful characterization of some of the elements of J4, and
by extension, its initial ideal in, J4. To see this, we endow Clz;, y;] with the lexico-

graphic term order
Ty > Ty > ... > T > Y1 > Y2 > ... > Un

and assume that our matrices Ay, ... A, are generic in the sense that the maximal

minors of the 3 X 2n matrix

(AT AT .. AT
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are invertible. We focus on a particular set of monomials: define the monomial ideal

M, = (x;z;xy : 1, j, k distinct indices in [n]) . (5.5)

For distinct 4, j, k € [n], consider the 6 x 6 matrix

A pp 0 0
A, 0 0 py

Since Agjry is a square matrix, its only maximal minor is the determinant of the

entire matrix. If we write Aj for the rth row of A, then

A2

(2
det Agjry = det AJQ, x; x; 2, + lex. lower order terms
A
where the coefficient of z; x;z) is nonzero due to the genericity assumption on

Ay, ..., A,. Then z; x; x) € in, J4. This proves the following result:
Lemma 5.2. M,, C in, Jy4.

From here, we can mimic the construction in [2] to express V4 as the projection of
a diagonal embedding of P3: extend each camera matrix A; to an invertible 3 x 3

matrix
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by adding a row b; to the top. The corresponding diagonal map is

Yp: P2 — P2 x P2 x ... xP?
" (5.8)
x +— (Bix, Box, ..., B;x)

Let Vg = ¢¥p(P?), Jp = 1(Vg) C Clw;, x4, y; : i € [n]], and consider the coordinate

projection

7 P2 xP?x...xP? — PxP'x...xP!
(5.9)

The composition 7 o ¢ g is a rational map that coincides with ¢ where ¢ is defined.
Then V4 = n(Vp) and
Ja=Jp N Clzy, y; : i € [n]]. (5.10)

The polynomial ring Clw;, x;, y; : i € [n]] admits the Z"-grading

deg(w;) = deg(z;) = deg(y;) = e; (5.11)

where e; is the i*" unit vector in R”. With respect to this grading, the multigraded

Hilbert function of Clw;, x;, y; : i € [n]]/Jp is
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H N™ — N

(u1 +...2+un+2)

( | (5.12)
Uty oo Up) +—

The multigraded Hilbert scheme Hsj,, which parametrizes Z"-homogeneous ideals
in Clw;, z;, y; : i € [n]], has a unique Borel-fixed ideal Z3,, that, under the correct
genericity conditions on By, ..., B,, is the initial ideal in, Jg. We obtain the fol-

lowing lemma by making use of the results from from Cartwright and Sturmfels in
[3I:

Lemma 5.3. Z3, is generated by the following monomials, where i,j and k are

distinct indices in [n]:
W; Wi, Wy Xj, Tj Tj L.

Also, when By, ..., B, are sufficiently generic, then Zs,, = in, Jp with respect to

the lexicographic term order
Wy = We > ... > Wy > T1 7 oo > Ty > Y1 > oo > Yp-

From this, we can prove the following:

Theorem 5.4. If Ay, ..., A, are generic, then M, = in, J4, where > is the lexi-

cographic term order induced by
Ty > Tg > ... > Ty > Y1 > ... > Un

Proof. Fix the term order above on Clw;, z;, y; : ¢ € [n]]. From Lemma 5.3,
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M, = Z5,, NClz;, y; : i € [n]]. With respect to the lexicographic term order, the
operation of taking initial ideals and intersections commute, so
ing (J4) = in_(Jp N Clay, y; : i € [n]])
= in.(Jg) N Clzy, y; : 1 € [n]]

= Z3n N Clzy, y; 1 1 € [n]] = M,.

Finally, this gives us a determinantal description of the generators of iny J4:

Corollary 5.5. For generic Ay, ..., Ay, the generators of in. J4 are given by the

leading terms of the mazimal minors of A, for |o| = 3.

Proof. The generators of in, J4 are of the form x;z; x;, where 4,7,k are distinct

indices in [n]. From Lemma 5.2, these are the leading monomials of det A;;,. O

5.3  Generalizations: P'~!into (P!)"

The techniques used in the previous section readily generalize to rational maps of

the form

¢: Pt — PLxPlx ... xP!
(5.13)
x o (Aix, Aox, ..., AyX)

where r > 3 and the A; are real 2 x r matrices of rank 2. Again, we let V4 = ¢(P7) be

the multiview variety, J4 = I(V4) the multiview ideal, and for ¢ = {0y, ... ,0,} C
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[n] we consider the matrix

Asy Poy 0 ... O
A,, 0 p,, - 0
A, = ’ ’ (5.14)
A,, 0 ... 0 p,,
where p; = [z;9;]7. In this case, A, is a 25 x (r + s) matrix. We proceed in the

same manner as in Section 5.2:
Lemma 5.6. The mazimal minors of A, for |o| > r lie in Ja.

Proof. The proof is identical to the proof of Lemma 5.1, except in order for A, to
have more rows than columns, we require that 2 |o| > r + |o], so |o| > r. O
Lemma 5.7. Let M, be the ideal generated by monomials of the form

Liy Lig -+ Ty

r

for distinct indices iy, i, ... i, € [n]. Assume that Ay, ..., A, are generic in the

same sense as in section 1. Then with respect to the lexicographic term order
Ty > Tg = ... > Tp > Y1 > - > Yn,

Proof. Given r distinct indices i1, ia, ... ,4, € [n], the corresponding matrix
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A“ pil 0 0

A, 0 p, 0
Afirin,iv) =

Air 0 . 0 Di,

is an r X r square matrix, so its determinant

2

Ail

2
A,l;2

det Ag, 4,4,y = det Tiy Tiy - .. T + lex. lower order terms

A2
is in J4. The coefficient of the leading term is nonzero, due to the genericity of

Ay, ..., Ay Then o, x4, ... x;, is in ing Jy. O

The diagonal embedding in this case is similar in principle to the embedding in the
previous section, but in this case we need to add r — 2 rows to each A; to obtain an

invertible r x r matrix B;: for each 7, let

r—2
b;

A;

be the matrix A; with r — 2 rows added to create an invertible matrix. The corre-
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sponding diagonal embedding is

Yp: Pt — Pl ox Pl oxo o x Pt
N (5.15)

x +— (Bix, Box, ..., B,x)

As before, we let Vg = ¢p(IP"=1). The corresponding ideal Jp = I(Vp) is an ideal

in the polynomial ring Clw;, j, z;,y; : ¢ € [r —2],j € [n]]. Let

T Pt x Pt x ... x Pt — Pl x Pl x ... xP!
(5.16)
(Wi 1 waj toon t Weeoj @ T 1 Yj) > (x; @ yj)
Then ¢ and 7 o ¥p agree wherever ¢ is defined, so V4 = 7(Vp) and J4 = Jp N
Clz;, ,y; : j € [n]]. The polynomial ring Clw; j,z;,y; : i € [r —2],5 € [n]] admits

the Z"-grading
deg(wy ;) = deg(wq,;) = ... = deg(w,_2,;) = deg(x;) = deg(y;) = e

where ¢; is the i standard unit vector in R”. With respect to this grading, the

multigraded Hilbert function of Clw; ;,z;,y; : i € [r —2|,j € [n]]/Jp is

’H(ul,...,un):<u1 7“—ul : )

which again puts us in a position to use the results in [3]: now, we consider the
multigraded Hilbert scheme H,, which has a unique Borel-fixed ideal Z,, that,
under similar genericity conditions on By, ..., B,, is the initial ideal of Jg. With

respect to the term order

Wi = - Wiy = W1 = oo > Wp2p > X1 7= oo 7™ Ty > Y1 > . > Yn,
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we have that J, is the elimination ideal obtained by eliminating the variables w; ;
(for i € [r—2] and j € [n]) from Jp, so the same result follows at the level of initial

ideals: in, (J4) will be the ideal in, (Jg) N Clz;, y; @ j € [n]].

For ease of exposition, we rename the variables {zy, ..., z,} and {y1, ..., y;} to
{wy11, .., w1} and {wyq, ..., Wy, )}, respectively. In this setting, [3, Theorem

2.5] characterizes the generators of Z, ,,:

Proposition 5.8. The generators of Z,,, C Clw;; : i € [r], j € [n]] are monomials

of the form
Wiy gy Wig gy -+ - Wiy jy
where
(1) 2 <k < min(r,n)
(2) 1<k—1<iy, i, ... ip<r—1

(3)j1<j2<...<jk

(4) in + g + ...+ ip <r(k—1).

The next step is to compute the elimination ideal Z = Z,,, N Clw,; : i € {r —

1,7}, 7 € [n]]:

Lemma 5.9. The generators of Z are monomials of the form
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Wyr—1,j; Wr—1,4y -+ Wr—1 4,
where 1 < Jo < ... < Jg.
Proof. A monomial generator of Z,,, is of the form
W = Wiy j; Wig gy - - - Wiy gy,

satisfying conditions (1)-(4) of Proposition 5.8. If w € Z, then by condition (2),

iy =r —1for all | € [k], and by condition (4),

Z1+Z2++Zk:]{3(7’—1)§7’(k}—1)

but by condition (2), k —1 < r — 1 implies that & < r, so we must have that k = r,

and w is of the form
W = Wr—1,j; Wr—1,p -+ Wr—1,y,-
O

Since we have identified x; and y; with w,_;; and w, ;, respectively, this shows
that the elimination ideal Z,, N Clz;, y; : j € [n]] is the ideal generated by the

monomials

T

$]’1 CL’jQ [L‘j
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where j1, ..., j. are distinct indices in [n]. This gives us the following generalization

of Theorem 1:

Theorem 5.10. When Ay, ... A, are generic, then in, (J4) = M, where > is the

lexicographic term order induced by
T1 > T > ... > Tpn > Y1 > ... > Yn.

Proof. The above argument shows that Z,.,, N Clz;, y; : j € [n]] = M,. As before,
since taking initial ideals commutes with intersections,
in, (Ja) = in.(Jp N Clz;, y; : j € [n]])
= in (Jg) N Clzj, y; : j € [n]]
= Zan N Clzj, y; : j €[n]]
= M,.

]

In particular, this shows that the generators of in. (J4), like in Section 5.1, have a

determinantal representation as the leading monomials of maximal minors of A,.

5.4 Generalizations: P" into (IP’T_l)”

The rational maps in the previous sections gave rise to multiview ideals J4 where it
was relatively straightforward to come up with a determinantal representation for

in, (J4). In general, this is less straightforward: for r > 3, consider a rational map
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¢p: Pr— Pl x Pl ox 0 x Pt
(5.17)
x — (A1x, Aox, ..., A,X)
where Ay, ..., A, are real r X (r + 1) matrices of rank r. Let V4 = (¢(P") and

Ja =1(Vy) CClx;; : i €[r], j € [n]] be the multiview variety and ideal of ¢, and

for 0 = {01,...,0s} C [n] and py = [w14 Top ... T.1]7, consider the matrix
Asy Pey O ... O
A,, 0 p,, - 0
A, = ’ ’ : (5.18)
A,, 0 ... 0 p,,

This is an sr x (s 4+ r + 1) matrix, which suggests the following result:
Lemma 5.11. The maximal minors of Ay, for |o| > 2, are in J,.

Proof. The argument is the same as in Lemma 5.1, except in order to ensure that
A, has more rows than columns, we require that sr > s + r 4+ 1, or equivalently,
s> [=2]. Forr >3, [H] =2,s0 s > 2. O

r—1

As in the case of P we give the polynomial ring Clz,; : ¢ € [r],j € [n]] the

lexicographic term order

Tap > Teg &= a<cora=candb<d.

First, we will use the results from [3] to give a description of the generators of
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in, (Ja):

Lemma 5.12. For n > r + 1, the generators of in, (Ja) are of the form

Tiy gy Tigja - - Tig ji
where
(1) 2<k<r+1
(2) j1 <ja<-++ <k
(8) 1<k—1<dy,d9,...,9 <r—1, and

(4) iy +ig+ - +ig <r(k—1)—1.

Proof. This follows from mimicing the construction in Sections 5.2 and 5.3: to each

matrix A;, we add a row b; to create an (r + 1) x (r 4+ 1) invertible matrix

b;
Bi =
A
Then we let
P Pt Prloxo o x Pt
x +— (Bix, ..., Byx)

and consider the variety Vg = ¥(P7~1) and its ideal Jg = [(Vp). If we think of Jg

as an ideal in Clwj, z;; : @ € [r],j € [n]], then [3, Theorem 2.5] characterizes the
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generators of €, Jg where > is the original term order in Clz;; : i € [r], j € [n]]

with
Wy > W2 > ... > Wy > Ty

for all 4, j. The result is obtained by eliminating the w; variables with respect to

this term order. O

Here, it is not as clear that these monomials appear as the leading terms of minors
of A,; one difficulty that we encounter is that the size of ¢ is allowed to vary, unlike
in the previous cases. However, it turns out that a description similar to Theorems

5.4 and 5.10 is possible:

Theorem 5.13. For generic matrices Ay, ..., Ay, the monomials described in Lemma

5.12 are the leading terms of maximal minors of A,.

Proof. For a monomial x = x;, j, Ti,j, - .. Ti, 4, Of the form above, consider the

corresponding matrix

Ail Diq 0 C 0
A . 19 0 p’ig 0

This is a rk X (r+k+1) matrix, so the maximal minors of this matrix are obtained

by removing rk —r —k —1 rows. We will form a maximal minor Ag of A by removing
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every row of A containing a variable not in x and lexicographically greater than a
variable in x. This is possible because by condition (4) of Lemma 5.12, for each
variable z;, j,, there are at most 7; — 1 lexicographically greater variables in the set
{11, T2y - Tiyjys -+ »Trj, }, SO In the matrix A, there are at most i; — 1 such

variables in the same column as z;, j,. Then in total we must remove
(21—1) + (Zg—l) + ...+ (Zk—1)221+22+ e F—k

rows from A,, which by condition (4) of Lemma 5.12 is bounded above by r(k —
1) —1—k =rk—r—k—1. This shows that we are able to remove exactly the rows

we need, to obtain a maximal minor Ay such that

det Ay = a¢ x + lower order terms

where ag is the determinant of a subset of the rows of the A;, , which is nonzero by

the assumption that Ay, ..., A, is generic. n

5.5 Generalizations: P! into (Ps~1)"

We now consider the most general class of rational maps: let n > r > s > 1, and let

¢ Pt — Pl x Pl ox 0 x P
(5.19)

x  — (Aix, Aox, ..., AX)

where Ay, ..., A, are real s x r matrices of rank s. As before, let V4 = ¢(P7~1) be

the multiview variety, J4 = I(V,4) the multiview ideal in Clz;; : i € [s], j € [n]],
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and for o = {0y, ..., or} C [n], let
Asy Poy 0 ... O
A,, 0 p,, - O
A, = ’ ’ (5.20)
A,, 0 ... 0 p,
where p; = [z1 T2, ... x5;]7. Thisis a ks x r+ k matrix, so for A, to have more

rows that columns, we need that £ > 5. By following the same argument as in

Lemma 5.1, we can conclude the following:
Lemma 5.14. The mazximal minors of A,, for |o| > [ 5], lie in Ja.

Our ultimate goal is to give a determinantal representation of in. (J4) with respect

to the lexicographic term order
Tap = Teg &= a<cora=candb<d

and with the same genericity assumption on the A; as before.

We add r — s rows, b}, ... b~ to A; to obtain an invertible r x r matrix
b;
Bi =
b;~*
A

for i =1, ... n. Define a map
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Pl Pl Pl oxoLL o x Pt
Vs (5.21)

x +— (Bix, Box, ..., B;x)

and let Vg = ¢p(P"1) and Jp = 1(Vg) C Cly;;, vk : © € [r—s], k € [s], j € [n]].

We can realize our original map ¢ as a composition of ¥ with a projection: let

T Pr-1 x Pt x ... x P! — Pl x Pl ox L x Pt
| | (5.22)

(oo cyf, c a2t — (xf « ... ah).
Then ¢ = 7 o 1 whenever ¢ is defined. Then V4 = n(Vp), and J4 = Jg N Clz;; :

i € [s], [j] € [n]]. Note that Jp is generated by the 2 x 2 minors of the matrix
[Bflpl B;lpz B;lpn}

where p; = [Y1i¥2i -+ Yr_siT1; --- Tsi) . Now we compute the Hilbert function
of Clyij, xx; = @ € [r—s|, k € [s], j € [n]]/Jp with respect to the Z"-grading
deg(y1;) = ... = deg(y,—s;) = deg(x1;) = ... = deg(z,;) = e;, where e; is the

5" standard unit vector in R".

N* — N, (ug, ... uy) —

d—1
<“1 o ) (5.23)

d—1
This puts us in a position to use the results from [3]: in particular, that the unique
Borel-fixed ideal Z,, of the multigraded Hilbert scheme H,,, under the correct
genericity conditions on the B;, is the initial ideal of Jg. Our goal is to characterize
the generators of Z;,. As in Section 5.3, we rename the variables z;; to y,_si;;

and consider Z,,, as an ideal in Cly;; : i € [r], j € [n]].
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Lemma 5.15. The ideal Z,,, C Cly;; : i € [r], j € [n]] is generated by all mono-

mials of the form
Yivgr Yizsga - - - Yirg
where
(1) 2 <k < min(r,n)
(2) 1<k—1<iy, 09 ..., <r—1
(3) j1<ja< ... <jk
(4) i1 +is+ ... +ip <r(k—1).

The ideal Z that we are interested in is the ideal we obtain by eliminating y; ; for

1< <r—s:

Corollary 5.16. The ideal Z = Z,,, N Cly;; : r—s+1 < i < r je[n]is

generated by all monomauals of the form
Yir,gn Yizga -+ Yir,je

where

(1) 51 <k<r

(2)1<k—1<iy, i, ..., ix<r—1
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(3) 1 <jo< ... <Jk
(4) i1 +is+ ... +i <r(k—1).

Proof. The only difference between this statement and the statement of Lemma 5.15
is (1). A monomial in Z is of the form
Yivgr Yizgz -+ Yig,u
where il, ,ik Z r—s+1 and i1+i2+ +lk S T(k—l) Then i1+i2+ Zk Z
k(r—s+1)and
k(r—s+1)<rk-1)
k(1—s5)<-—r

kz_liszsil (since s >1,1—s5<0),

so k> [5]. O

If we identify the x; ; with the y,_s1;; in the above lemma, we obtain the following

result:

Corollary 5.17. Identifying the x; ; with the y,_s.; j, the above ideal Z in Clz;; :

i € [s], 7 € [n]] is the ideal generated by monomials of the form
Liyjr Lizg,go +++ Lig,j

where
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(1) [;51<k<r
(2) 1§i1,i2,...,ik§8—1
(3) 1 <Ja < ... <7

(4) Zl—FZQ—{——{—ZkSSk—T’

Proof. (1) and (3) are unchanged from Lemma 5.16 because we identify the variables
x;j with y,_s4;;, where ¢ € [s]. This changes the upper bound in (2) from r to s.

Finally, the upper bound in (4) changes because given a monomial
Tiy gy Tigja - - - Tig i
in Z, where i; € [s], the corresponding monomial from the setting of Lemma 5.16 is
Yr—s+i1,j1 Yr—s+is,go - - - Yr—s+ig,jr
where
(r—s+i) + (r—s+iz) + ... +(r—s+ix) <r(k—1)
k(r—s)+i +is+ ... +ip <r(k—1)
1+io+ ... +ip < sk—r.

]

Corollary 5.17 gives us a characterization of the generators of Z. The connection

between the ideal Z and the initial ideal of J, is that Z arises as an elimination ideal
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of Zy,,, which by [3] is the initial ideal of Jp. But Jy4 itself arises as an elimination

ideal of Jg, so the same result will follow at the level of initial ideals:
Theorem 5.18. When Ay, ..., A, are generic, in,(J4) = Z.
Proof. With respect to the lexicographic term order, the operation of taking the

initial ideal commutes with intersecting ideals. Therefore,

in, (Ja) = in.(Jp N Clz;; : 1 €s], j € [n]])
= in.(Jp) N Clzy; : i €[s], j € [n]]
= Zgn N Clz;; i€ [s], j € [n]]
= Z.

]

Finally, we use Corollary 5.17 to give a determinantal representation of the genera-

tors of Z:

Theorem 5.19. When Ay, ... A, are generic, the generators of Z are leading

monomials for a mazximal ideal of A, for some o C [n].
Proof. A monomial generator of Z is of the form
Liy,gr Lig,ga -« -+ Lig,j

satisfying conditions (1)-(4) of Lemma 5.12. In particular, i, € [s — 1]. Let 0 =
{il,’ig, ,Zk} Then
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Ai1 Diy 0 c. 0
Aa' = Ai2 0 piz - ° 0

is a ks x r + k matrix. Assuming that k > [*5], we have that ks > r + k, so we
must remove ks — r — k rows to produce a maximal minor of A,. In each block of
variables xy j,, %2 j,, ... @i, j, - .. Tsj,, there are ¢ — 1 variables greater than x;, ; with
respect to >, so in total the number of variables in the vectors p;,, ... ,p;, that we

must eliminate is
(4 —1) + (la—1) 4+ ... + (i — 1)

which by condition (3) of Lemma 5.17 is bounded above by sk —r — k. This shows

that we can form a maximal minor of A, in the following way: for each submatrix

Ail e pil

of A,, remove every row containing a variable x;, ,, that is lexicographically greater
than z;, ;,. By the argument above, the number of rows that we need to remove in
this fashion is bounded above by the number of rows that we are allowed to remove
to form a maximal minor of A,. Therefore, it is possible to form a maximal minor

of A, of the form

Ao Tiy jy Tigjo - - - Tip,j, + lex. lower order terms
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where ag is the determinant of some subset of rows of the A;, which by our genericity

assumption will be nonzero. O

5.6 A Universal Grobner Basis

So far, we have characterized the initial ideal of the multiview ideal defined by the

rational map

¢: Pt — Pl ox Pl ox L x P
x  — (A1x, Aox, ..., ApX)
where n > r > s> 1, and the Ay, ..., A, are s X r matrices of rank s. When the

A; are generic, then the initial ideal of J4 is generated by the leading terms of the

maximal minors of the matrix

Asy Poy 0 ... O
. Asy 0 po, - 0
A,, 0 ... 0 p,,
where p,, = [T14; T20, - Tso,|' and o = {0y, ..., 01} is a k-subset of [n] where
r
<k<r.
(s — 1] =r=

We use this to prove the following:

Theorem 5.20. Let Ay, ..., A, be generic. Then the set of mazximal minors of A,,
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T
s—1

where [ < |o| < r is a universal Grobner basis for Jy.

Proof. Let M be the set of all maximal minors of A,, for all o C [n] where [ 5] <
lo| < r. We already know that M C J4. Given a polynomial f € J4, Lemma
9 shows that the leading term of f is an element of in. M. Then there exists a
polynomial g; € M such that the leading term of g; divides the leading term of f,
and there exists some polynomial h; such that the leading terms of f and hy g; are
the same; then f — hy g; is a polynomial in .JJ4, whose degree, with respect to >, is

strictly less than f. We can repeat this process with f — h; g1 and conclude that
J—=higi—haga— ... —hpgn=0

where the g; are generated by maximal minors of A,,, for some subsets o; C [n] with

T

[ 51 < |oi| < r. This shows that M generates .Jy4; since the leading terms of M

generate in, J4, this shows that M is a Grobner basis of J4 with respect to >.

To show that M is a universal Grobner basis, we begin with the following observa-
tion. Let f € M. Then there exists some o C [n] such that f is formed by removing

some rows from the matrix

Ay, Poy O 0
. Ay, 0 Do, 0
A,, 0 ... 0 p,,

and taking the determinant of the resulting submatrix. With respect to the original
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term order >, the leading monomial of f can be read off by looking at each column
Doys - - - » Do, and recording the variable in the first row (for example, if the row con-
taining x,, was removed but the row containing y,, was not, the leading monomial
of f will contain y,,). The remaining monomials of f come from taking all possible
combinations of taking one variable from each column p,,, ..., p,.. Since the A;
are generic, the coefficients of each monomial, which are the determinants of some
subset of the rows of the A;, will be nonzero, so all such monomials will appear as

a monomial in f.

Let =’ be any lexicographic term order. The set of maximal minors M is invariant
under term orders, so it still generates J4. Then in./ M C in..J4. We will first
show that the generators of in,.. M are in bijection with the generators of in, M. Let

f € M. There exists some o C [n] such that f is a maximal minor of

Asy Py 0 ... O
AU — AU2 O pO’z - ° 0
A,, 0 ... 0 p,

The term order >’ permutes the ordering of the variables in each column vector p,,,
in the sense that there exists some 7; € Ss (not necessarily the same for each ;)

such that

Try(1),04 — T7;(2),04 - Try(s)

304 °
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For each i, let p, = [Tr,(1).0; Tr(2)00 - - Tr(s)0:) > and let A, be the matrix A,,

with the rows permuted with respect to 7;. Consider the matrix

A, p,, 0 ... 0
A/ — A:U 0 p/Uz hE 0
AL, 0 ... 0 p ]
where the rows of the o block [A, ... p/ ...] are permuted by 7; (so the m'
row of the block [A,, ... ps, ... ]isthe 7;(m)"™ row of [A, ... p, ...]). Let ' be

the determinant of the maximal minor fo A, obtained by removing the same rows
that were removed from A, to form f (i.e., if the j*® row of A, is removed, then
the j' row of A’ is removed). Since A’ is defined by permuting the rows of A,, f’,
up to a power of (—1), is a maximal minor of A,, so LM/ (f’) € in_ M. LM (f")
can be obtained from A/ in the same way that LM, (f) can be obtained from A,

(recording the top variable left in each column p’a If
LMy (f) = iy jy Tigjo - - Tig
then
LM, () = @r (1)1 Tralin)da - - - Trlin)oi

which defines a map
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{generators of in. M} — {generators of in,_, M}
Liy gy Vigjz -+ Lig,jr o Tri(in)gn Tralin)go - o Tri(in).dn
and its inverse

{generators of in_, M} — {generators of in_ M}

T

Liy,gr Lig,ga + + + Lig,j — ‘Trfl(il),jl ‘rrgl(ig),jg T

T (k).

which shows that the generators of in. M and in. M = in, J4 are in bijection. In
particular, this means that the Hilbert function of Clz;; : i € [s], j € [n]]/in.. M is
the same as the Hilbert function of Clz;; : ¢ € [s], j € [n]]/in.J4. But the Hilbert
function of Clz;; : i € [s], 7 € [n]]/in.J4 is the Hilbert function of Clz;; : i €
[s], 7 € [n]]/Ja-

Since the Hilbert functions of Clz;; : i € [s], j € [n]]/in/M and Clz;; : i €
[s], j € [n]]/Ja coincide, this forces ing'M = in./Ja, so M is a Grobner basis of
Ja with respect to ='. This shows that M is a Grobner basis with respect to any

lexicographic term order.

Now let >" be any term order. Again, the set of maximal minors M is invariant
under changing term orders, so it still generates J4. Let =] . be the lexicographic
term order induced by the ordering of the variables z; ; under ~'. Let f € M. Then

for some o C [n], f, up to a power of —1, is a maximal minor of



83

A, o, 0 ... 0
A/ o A572 0 p:72 0
I A, 0 ... 0 p.

where p, and A are defined above, with respect to the term order ;... LM, (f)
can be obtained by recording the top variable left in each column p[ . Any other
monomial x* that appears in the support of f will differ from LM>Eez( f) by picking
variables from the p,, that are less than, with respect to >', the top remaining
variable in p,,. Therefore, LM, (f) =’ x* for all other monomials x* that appear

in the support of f.

This shows that for any f € M, LM,, (f) = LM./(f), so in./ M = in,, M =
in.; J4. In particular, this means that the Hilbert functions of Clz;; : i € [s], j €
[n]]/in. M and Clz;; : i € [s], j € [n]]/in.; Ja coincide. By the same argument as
in the lexicographic case, this forces in.»M = in..J,. Then M is a Grobner basis of

Ja with respect to =', which shows that M is a universal Grébner basis of Jy. [

5.7 The Primary Decomposition and Hilbert Function of in, (J4)

In the case of a rational map ¢ : P> — P! x ... x P! defined by generic 2 x 3

matrices Ay, ..., A,, it is possible to read off the primary decomposition of in, (J4):

Proposition 5.21. The primary decomposition of in,.Ja is



84

in, Ja=(") Py

1,]
where P, ; = (xy, + k € [n] \{i,7}) and the intersection runs over all distinct indices

i,j,€ [n]. Here, the P;; are also prime ideals.

Proof. A generator of Jy is of the form z, x; x. for distinct indices a, b, and ¢ € [n].
If v, xpx. ¢ P, j for some i,j € [n], then z,, z;, and z. are all not in P, ;, which is a

contradiction. This shows that in, J4 is contained in the intersection of the F; ;.

Conversely, given a monomial x* in the intersection of the P, ;, there must exist
three distinct indices a,b, and ¢ € [n] such that x, z, z. divides x; otherwise x“
is a unit multiple of z; z; for some 4,j € [n], and then x* ¢ P, ;, a contradiction.
This shows that the intersection of the P, ; is contained in iny.J4, so the two are

equal. O

We can use this primary decomposition to compute the multigraded Hilbert function

of the quotient ring Clx;, y; : @ € [n]]/in. Ja:

Proposition 5.22. With respect to the Z™-grading deg(z;) = deg(y;) = e;, where
e; is the i standard unit vector in R", Cla;, y; : i € [n]]/in. Ja has the Hilbert

function

i=1 1

i,j€[n
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Proof. Let u= (uy, ... ,u,) € N*. H(u) counts the number of monomials of degree
u (with respect to the Z"-grading) in Cx;, y; : @ € [n]]/in.Ja. Such a monomial is
of the form x*y®, where a = (a1, ...,,a,), b= (by, ... ,b,), and a + b = u. Then
b; = a; — u; for all i € [n], and the choice of a; determines b; for each i. Using the
primary decomposition of in, J4, x*y® ¢ P;; for some i,j € [n]. Then ay = 0 for
all k # i,75. To prevent overcounting, we count the number of possible monomials

x®y® by considering 3 cases:

(1) a = 0: this contributes one monomial, y*, to the count.

(2) ap = 0 for all k # ¢, for some i € [n], and a; > 0. Then 1 < a; < u; so there

are u; possible choices for a;. Summing over all ¢ € [n], this contributes

n
D
i=1

to the count.

(3) a; > 0 and a; > 0 for two distinct indices 4, j € [n], and ay = 0 for all k # 4, j.
Then there are u; u; possible choices for 7 and j, and summing over all distinct

pairs 4, j € [n], this contributes

to the count.



86

Adding each of these cases together, we conclude that the number of distinct mono-
mials x?y® such that a + b = u is
1+ Zu, + Z U; Uy
=1 i,j€ln]

]

Now we consider the case where ¢ : P"~! — P! x ... x P! is a rational map defined

by generic 2 x r matrices Ay, ..., A,. In this case, we’ve shown that
ing (Ja) = (xj, Tj, ... Tj. * J1, Jo, - .. Jr are distinct indices in [n])

which has the following prime decomposition:

Proposition 5.23.

iny (Ja) = \(w; : i € 0),

g

where the intersection runs over all (n —r + 1)-subsets o of [n].

Proof. A generator of in, (J4) is of the form x; x;, ... x; where ji, ..., J, are
distinct indices in [n]. Then for every (n — r + 1)-subset o C [n], there exists some
[ € [r] such that j, € o (otherwise, o contains at most (n — r) elements of [n], a

contradiction). This shows that
in, (Ja) C ﬂ(xl L1 E€0).

Conversely, if x is a monomial in the right side, there must exist r distinct indices

Jis - -+, Jr in [n] such that xj; x;, ... x;. divides x; otherwise, x is the unit multiple
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of at most r — 1 distinct variables z;,, ... ,z;_,. In this case, x ¢ (z; : i €
n]\{Jj1, - - ,Jr_1}), which is a contradiction since [n]\{j1, ..., jr—1} isan (n—r+1)-
subset of [n]. This shows the other inclusion. O

Again, we can use this decomposition of in, (J4) to compute the Hilbert function of

in, (Ja):

Proposition 5.24. With respect to the Z" grading deg(z;) = deg(y;) = e;, where

e; is the i standard unit vector in R™, Clzy, y; = i € [n]]/in.(Ja) has the Hilbert

function
r—1 %
Hlur, .un) =14 ) > 11w (5.25)
i=1 {]1,‘]2,7]1}2[%} =1
Proof. Let u = (uy, ... ,u,). H(u) counts the number of monomials of degree u

(with respect to the Z"-grading) in Clz;, y; : ¢ € [n]]/in.(J4). Such a monomial
is of the form x*y®, where a = (ay, ... ,a,), b = (b1, ... ,b,) and a + b = u. Then
b; = u; — a; for all i € [n], and the choice of a; determines b; for each i. It suffices
to count the number of monomials x*y® ¢ P, for some (n — r + 1)-subset o of
[n]. Equivalently, we want a;, = 0 for all but at most (r — 1) indices. To prevent
overcounting, we count the number of possible monomials x*y® where a + b = u,
arp = 0 for all but exactly j indices (where j € [r — 1]). The number of such

monomials is



1+§ Z li[u]

i=1 {jl:j27 7jz}g[n] =1

88
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Chapter 6

Conclusion

The goal of our research was to generalize the results on the existence of epipolar
matrices in and the structure of the multiview ideal. In [I], sufficient conditions
for the existence of epipolar matrices were given, based on the rank of a particular
linear map Z and whether the projective cameras were assumed to be uncalibrated or
totally calibrated. In Chapter 4, we extended the rank condition to the case where
the cameras are partially calibrated, using the properties of projective varieties

described in Chapter 2.

In Chapter 4, we examined two types of partially calibrated camera systems. In
Section 3 of Chapter 4, we considered pairs of cameras where the partially cali-
brated camera was known to have a diagonal calibration matrix, and we proved
that the rank condition in this case is the same as the rank condition for totally
calibrated cameras. Then in Section 4 of Chapter 4, we relaxed the condition on

the calibration matrix and in this case, the rank condition was exactly the same as
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in the uncalibrated case.

These results are somewhat surprising, since what seemed to be intermediate cases
for calibration behave like the two extreme cases for calibration. It would be inter-
esting to consider other characterizations of partial calibration and determine if a

more intermediate case exists.

In Chapter 5, we generalized some of the results in [§] regarding the structure of the

multiview ideal by examining the structure of the ideal J4 of the rational map

¢: Pt — Pl ox Pl ox L x P
x o (Aix, Aox, ..., ApX)
where n > r > s> 1, and Ay, ..., A, are s X r matrices of rank s. The primary

objects of interest here are the monomial ideals and Grobner bases described in
Chapter 2. In Sections 3, 4 and 5 of Chapter 5, we were able to mimic the argument
used in [2 Section 2] and use the results from [3] to characterize the initial ideal of
Ja as the leading terms of maximal minors of a particular set of matrices A,. In
Section 6, we proved that these maximal minors actually define a universal Grébner
basis for J4. Finally, in Section 7, we obtained a prime decomposition for the initial
ideal of J4 in the case where ¢ is a map from P™~! into (P')". This result is used to

compute the multigraded Hilbert function of in . .Jy.

While we were able to generalize the result regarding the universal Grébner basis

of J4 in [2], we were unable to generalize the primary decomposition of its initial
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ideal except for the cases described in Section 7. This result, for general r > s > 1,

would allow us to compute the multigraded Hilbert function of the initial ideal.
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