1 Characterization of basic solutions

We will consider polyhedra in standard form

\[P = \{ x \in \mathbb{R}^n : Ax = b, \ x \geq 0 \} \]

where \(A \) is a \(m \times n \) matrix. Without loss of generality we can assume that the rows of \(A \) are linearly independent. Now, for a basic solution, we need a total of \(n \) active constraints \(m \) of which are provided by the matrix \(A \). Then we need to choose \(n - m \) variables \(x_i \) and set them to zero. Will an arbitrary choice lead to a basic solution? The answer is given by the following theorem:

Theorem 1.1. Suppose the \(m \times n \) matrix \(A \) has independent rows. Then \(x^* \in \mathbb{R}^n \) is a basic solution of \(Ax = b \) and \(x \geq 0 \) if and only if \(Ax^* = b \) and there are \(m \) indices \(B(1), \ldots , B(m) \) such that the columns \(A_{B(1)}, \ldots , A_{B(m)} \) are linearly independent and if \(i \neq B(1), \ldots , B(m) \) then \(x^*_i = 0 \).

Proof. "if": Since the columns are linearly independent \(x^* \) is uniquely determined.

"only if": Let \(x^*_{B(1)}, \ldots , x^*_{B(k)} \) are the nonzero components of \(x^* \). In order to get a unique \(x^* \) we need to have corresponding columns to be linearly independent. So \(k \leq m \), and we can complete these columns to \(m \) linearly independent columns.

This theorem suggests that in order to form a basic solution, we need to pick \(m \) linearly independent columns of \(A \), say \(A_{B(1)}, \ldots , A_{B(m)} \), set \(x_i = 0 \) not corresponding to these columns and solve the system \(Ax = b \). If
we get a nonnegative solution it is a basic feasible solution. The variables
$x_{B(1)}, \ldots, x_{B(m)}$ are called basic variables, the rest nonbasic variables. The
 corresponding columns of A form a basis, which is an $m \times m$ submatrix B
of A which is invertible. Hence the basic variables are given by $x_B = B^{-1}b$.