Final Exam, Math 371

There are five questions on the exam. Each question is worth twenty points.

1. Do TWO of the following:

a) State the Heine-Borel Theorem.

b) State Lindelöf’s Theorem.

c) What does it mean for a subset \(A \) of a metric space \(X \) to be compact in \(X \)?

d) State the Cauchy-Schwarz Inequality.

2. Are the following true or false? Justify your answers briefly.

a) If \(A, B \subseteq \mathbb{R} \), then \(\overline{A \cap B} = \overline{A} \cap \overline{B} \).

b) If \(x_k = \left(\frac{1}{k}, \frac{1}{k^2}, \frac{1}{k^3} \right) \), then \(x_k \to (0, 0, 0) \) as \(k \to \infty \).

c) Every compact subset of \(\mathbb{R} \) is connected.

d) If \(A \) is an open subset of \(\mathbb{R} \), and \(B \) is any subset of \(\mathbb{R} \), then \(AB = \{ xy \in \mathbb{R} : x \in A, y \in B \} \) is open in \(\mathbb{R} \).

3. For \(x, y \in \mathbb{R}^2 \), define \(\rho(x, y) = \max\{|x_1 - y_1|, |x_2 - y_2|\} \), where \(x = (x_1, x_2) \) and \(y = (y_1, y_2) \). Show that \(\mathbb{R}^2 \) is a metric space with respect to \(\rho \).

4. Let \(X \) be a metric space. Suppose \(A \subseteq X \) and \(A \) has the property that there is an \(\epsilon > 0 \) such that \(\rho(a, b) \geq \epsilon \) for all \(a, b \in A \) with \(a \neq b \). Show that \(A \) is compact if and only if \(A \) is finite.

5. Let \(X \) be a metric space. Suppose \(A \subseteq X \) and \(A \) has the property that for each \(a, b \in A \), there is a continuous function \(f : [0, 1] \to A \) with \(f(0) = a \) and \(f(1) = b \). Show that \(A \) is connected.