6.1 Introduction.

6.1.0. a) False. $a_k = 1/k$ is strictly decreasing to 0 but $\sum_{k=1}^{\infty} 1/k$ diverges.
 b) False. The series associated with $a_k = (-1)^k$ and $b_k = (-1)^{k+1}$ both diverge, but $\sum_{k=1}^{\infty} (a_k + b_k) = \sum_{k=1}^{\infty} 0 = 0$.
 c) True. For example, if $\sum_{k=1}^{\infty} (a_k + b_k)$ and $\sum_{k=1}^{\infty} a_k$ converge, then $\sum_{k=1}^{\infty} b_k = \sum_{k=1}^{\infty} (a_k + b_k - a_k) = \sum_{k=1}^{\infty} (a_k + b_k) - \sum_{k=1}^{\infty} a_k$ converges by Theorem 6.10.
 d) True. By algebra and telescoping

 \[
 \sum_{k=1}^{\infty} (a_k - a_{k+2}) = \sum_{k=1}^{\infty} (a_k - a_{k+1}) + \sum_{k=1}^{\infty} (a_{k+1} - a_{k+2}) = (a_1 - a) + (a_2 - a).
 \]

6.1.1. a) $\sum_{k=1}^{\infty} (-1)^{k+1}/\sqrt{k} = -\sum_{k=0}^{\infty} (-1)^k = 1/(1 + 1/e) = e/(1 + e)$.
 b) $\sum_{k=0}^{\infty} (-1)^{k+1}/k^{2/3} = -\sum_{k=0}^{\infty} (-1)^k/\sqrt{k} = -1/(1 + 1/\pi^2) = -\pi^2/(\pi^2 + 1)$.
 c) $\sum_{k=0}^{\infty} (-1)^k/(2k+1) = 35 \sum_{k=0}^{\infty} (4/9)^k = 36(4/9)^2/(1 - 4/9) = 64/5$.
 d) $\sum_{k=0}^{\infty} (3k+1)^2/(7k+2)^2 = (5 \sum_{k=0}^{\infty} (7/9)^k + \sum_{k=0}^{\infty} (3/7)^k)/7^2 = (5/2 + 1/10)/7 = 13/35$.

6.1.2. a) $\sum_{k=1}^{\infty} 1/(k(k+1)) = \sum_{k=1}^{\infty} [1/(k-1) - 1/(k+1)] = 1 - \lim_{k \to \infty} 1/k = 1$.
 b) $\sum_{k=1}^{\infty} 1/(k+2) = -\sum_{k=1}^{\infty} (2k/(k+2) - (2k+2)/(k+3)) = \lim_{k \to \infty} (2k+2)/(k+3) - 3 = 3/2 = 3$.
 c) $\log((k+2)/(k+1)^2) = \log(k/(k+1)) - \log((k+1)/(k+2))$. Therefore, by telescoping we obtain

 \[
 \sum_{k=2}^{\infty} \log((k+2)/(k+1)^2) = \log(2/3) - \lim_{k \to \infty} \log(k/(k+1)) = \log(2/3).
 \]

 d) Since $2 \sin(a - b) \cos(a + b) = \sin(2a) - \sin(2b)$, we have

 \[
 \sum_{k=1}^{\infty} 2 \sin\left(\frac{1}{k} - \frac{1}{k+1}\right) \cos\left(\frac{1}{k} - \frac{1}{k+1}\right) = \sum_{k=1}^{\infty} \left(\frac{\sin \frac{1}{k} - \sin \frac{1}{k+1}}{k} \right) = \sin 2 - 0 = \sin 2.
 \]

6.1.3. a) $\cos(1/k^2) \to \cos 1$. Hence this series diverges by the Divergence Test.
 b) By L'Hôpital's Rule, $(1 - 1/k)^k \to e^{-1}$. Hence this series diverges by the Divergence Test.
 c) $s_n := \sum_{k=1}^{n} (k+1)/k^2 \geq t_n := \sum_{k=1}^{n} 1/k$. Since $t_n \to \infty$, it follows from the Squeeze Theorem that $s_n \to \infty$ as $n \to \infty$. Therefore, the original series diverges.

6.1.4. Since $s_{k+1} - 2a_k + a_{k+1} = (a_{k+1} - a_k) + (a_{k+1} - a_k)$, this series is the sum of two telescopic series. Hence

 \[
 \sum_{k=1}^{\infty} (a_{k+1} - 2a_k + a_{k-1}) = \sum_{k=1}^{\infty} (a_{k+1} - a_k) + \sum_{k=1}^{\infty} (a_{k+1} - a_k) = L - a_1 + a_0 - L = a_0 - a_1.
 \]

6.1.5. By telescoping,

 \[
 \sum_{k=1}^{\infty} (x^{2k} - x^{2(k+1)}) = (1 - \lim_{k \to \infty} x^{2k}) = \begin{cases}
 -1 & |x| < 1 \\
 0 & |x| = 1 \\
 \text{diverges} & |x| > 1.
 \end{cases}
 \]

6.1.6. a) Let $s_n := \sum_{k=1}^{n} a_k$. If $\sum_{k=1}^{\infty} a_k$ converges then $s_n \to s$ for some $s \in \mathbb{R}$. By Theorem 2.8, convergent sequences are bounded. Therefore, \{s_n\} is bounded.
 b) The partial sums of $\sum_{k=1}^{\infty} (-1)^k$ assume only the values $-1, 0$, hence are bounded. But the series itself diverges by the Divergence Test.

6.1.7. a) Let $x, y \in I$. By the Mean Value Theorem,

 \[
 F(x) - F(y) = F'(c)(x - y) = \left(1 - \frac{f'(c)}{f'(a)}\right)(x - y).
 \]
Thus by hypothesis, $|F(x) - F(y)| \leq r|x - y|$.

b) By a) and induction, $|x_{n+1} - x_n| = |F(x_n) - F(x_{n-1})| \leq r|x_n - x_{n-1}| \leq r^n|x_1 - x_0|.

c) Since $x_0 \in I$ and $F(I) \subseteq I$, all x_n's belong to I. Thus by b) and Geometric series, if $m = n + k$ then

$$|x_m - x_n| \leq \left(\frac{r^n + r^{n+1} + \cdots + r^{n+k-1}}{1 - r}\right)|x_1 - x_0| \leq \frac{r^n + r^{n+1} + \cdots + r^{n+k-1}}{1 - r}|x_1 - x_0|.$$

Since $r^n \to 0$ as $n \to \infty$, we see that x_n is Cauchy, hence converges to some $b \in I$, since I is closed. Taking the limit of $x_{n+1} = x_n - f(x_n)/f'(a)$, we obtain $b = f(b)/f'(a)$. We conclude that $f(b) = 0$.

6.1.8. a) Since the a_k's are decreasing, $ka_k = a_2 + \cdots + a_k \leq a_1 + a_2 + \cdots + a_k = \sum_{j=k+1}^{2k} a_j$. Let $\varepsilon > 0$ and choose N so large that $\sum_{j=k+1}^{2k} a_j < \varepsilon$ for $k \geq N$. Then $|ka_k| < \varepsilon$ for $k \geq N$, i.e., $2ka_k \to 0$ as $k \to \infty$. On the other hand, since $0 \leq 2(2k + 1)a_{2k+1} \leq 2ka_{2k} + a_{2k} \to 0$ as $k \to \infty$, it follows from the Squeeze Theorem that $2ka_{2k+1} \to 0$ as $k \to \infty$.

b) Clearly, $s_{2n+2} = s_{2n+1} - 1/(2n+2) > s_{2n}$ and $s_{2n+4} = s_{2n-1} - 1/(2n+2) < s_{2n-1}$. Also, $0 \leq s_{2n+1} - s_{2n} = 1/(2n+1) \to 0$ as $n \to \infty$. Hence by the Squeeze Theorem, $s_{2n+1} - s_{2n} \to 0$ as $n \to \infty$.

c) By part b), $\{s_{2n+1}\}$ is increasing and bounded above by $s_1 = 1$, $\{s_{2n+1}\}$ is decreasing and bounded below by $s_0 = 1/2$, and $s_{2n+3} - s_{2n} \to 0$ as $n \to \infty$. Hence both these sequences converge to the same value, i.e., the series $\sum_{n=1}^{\infty} (-1)^{k+1}/k$ converges. However, $k \cdot (-1)^{k+1}/k = (-1)^{k+1}$ does not converge to 0 as $k \to \infty$.

6.1.9. a) $|\sum_{k=1}^{n} b_k - nb| = |\sum_{k=1}^{n} (b_k - b) - \sum_{k=1}^{N} (b_k - b) + \sum_{k=N+1}^{n} (b_k - b)| \leq \sum_{k=1}^{N} |b_k - b| + \sum_{k=N+1}^{n} |b_k - b| \leq \sum_{k=1}^{N} |b_k - b| + M(n - N).

b) Set $B_n = (b_1 + \cdots + b_n)/n$. Let $\varepsilon > 0$ and choose N so large that $|b_k - b| < \varepsilon$ for $k \geq N$. By part a), $|B_n - b| \leq (N|b_k - b| + \varepsilon(n - N))/n$. Since N is fixed, $\sum_{k=1}^{N} |b_k - b|/n \to 0$ and $(n - N)/n \to 1$ as $n \to \infty$. Consequently, $\limsup_{n \to \infty} |B_n - b| \leq \varepsilon$. Since $\varepsilon > 0$ was arbitrary, it follows that $\limsup_{n \to \infty} |B_n - b| = 0$. Therefore, $B_n - b$ converges to 0 as $n \to \infty$.

c) If $b_k = (-1)^k$ then $B_n = -1/n$ if n is odd and 0 if n is even, so $B_n \to 0$ as $n \to \infty$. However, B_n does not converge as $k \to \infty$.

6.1.10. a) $s_n = \sum_{k=0}^{n-1} (1/k)n/a_k = \sum_{k=0}^{n-1} (1/k)(n-k)/n = (na_0 + (n-1)a_1 + \cdots + a_{n-1})/n = (a_0 + (a_0 + a_1) + \cdots + (a_0 + \cdots + a_{n-1}))/n = (s_1 + \cdots + s_n)/n$.

b) If $\sum_{k=0}^{\infty} a_k = L$ then $s_n \to L$ as $n \to \infty$. Hence by part a) and Exercise 6.1.9b, $s_n \to L$ as $n \to \infty$, i.e., $\sum_{k=0}^{\infty} a_k$ is Cesàro summable to L.

c) Since $s_n = \sum_{k=0}^{n-1} (-1)^k$ is 1 when n is odd and 0 when n is even, the corresponding averages are given by

$$\sigma_n = \begin{cases} (n+1)/(2n) & \text{when } n \text{ is odd} \\ 1/2 & \text{when } n \text{ is even}. \end{cases}$$

Therefore, $\sigma_n \to 1/2$ as $n \to \infty$ although $\sum_{k=0}^{\infty} (-1)^k$ diverges.

d) Suppose $\sum_{k=0}^{\infty} a_k$ diverges. Since $a_k \geq 0$, it follows that $s_n \to \infty$ as $n \to \infty$. Hence given $M > 0$, choose N so large that $s_N \geq M$ for $n \geq N$. Then $s_n \geq \sum_{k=N}^{n-1} s_k/n \geq (n - N)/n$. Since $(n - N)/n \to 1$ as $n \to \infty$, it follows that $s_n > M/2$ for n large, i.e., $\sigma_n \to \infty$ as $n \to \infty$.

6.1.11. Let $\varepsilon > 0$ and choose N so large that $\sum_{k=N+1}^{\infty} |a_k|/k < \varepsilon/2$. Since N is fixed, $\sum_{k=1}^{N} a_k/(j+k) \to 0$ as $j \to \infty$. Hence we can choose J so large that $|a_k/(j+k)| < \varepsilon/2$. Consequently, if $j > J$ then (since $k + j > k$)

$$\sum_{k=1}^{\infty} a_k/(j+k) \leq |\sum_{k=1}^{N} a_k/(j+k)| + \sum_{k=N+1}^{\infty} |a_k|/k < \varepsilon.$$

6.1.12. Fix $n \geq 2$. By hypothesis,

$$a_n = \frac{n+1}{n(n+1)(n+2)} = \frac{1}{2} \left(\frac{1}{n(n+1)} - \frac{1}{n(n+1)(n+2)} \right).$$

By telescoping, we have
\[\sum_{k=2}^{\infty} a_k = \frac{1}{2} \left(\frac{1}{6} - 0 \right) = \frac{1}{12}. \]

Since \(a_1 = 2/3 \), we conclude that
\[\sum_{k=1}^{\infty} a_k = \frac{2}{3} + \frac{1}{12} = \frac{3}{4}. \]

6.2 Series with nonnegative terms.

6.2.0. a) False. If \(a_k = 1/k^2 \) and \(b_k = 1/k \), then \(a_k/b_k \to 0 \) as \(k \to \infty \) and \(\sum_{k=1}^{\infty} a_k \) converges, but \(\sum_{k=1}^{\infty} b_k \) does not.

b) True. By hypothesis, \(0 \leq a_k \leq k^k \). Since \(0 < \alpha < 1 \), the Geometric series \(\sum_{k=1}^{\infty} a_k \) converges, thus by the Comparison Theorem, \(\sum_{k=1}^{\infty} a_k \) converges.

c) True. By hypothesis, \(a_k \leq \alpha^k \) for all \(k \in \mathbb{N} \). Choose \(N \in \mathbb{N} \) such that \(|a_k| \leq 1/2 \) for \(k \geq N \). Then \(a_{N+1} \leq a_N^2 \leq 1/4, a_{N+2} \leq a_{N+1}^2 \leq 1/16, \) and in general, \(a_{N+k} \leq 1/4^k \) for \(k = 1, 2, \ldots \). Since the Geometric series \(\sum_{k=1}^{\infty} 1/4^k \) converges, it follows from the Comparison Theorem that \(\sum_{k=N+1}^{\infty} a_k \) converges.

d) False. Let \(f(k) = 1/2^k \) and \(f^{k+1}(x) dx \geq 1/k \). (Such a function can be constructed by making \(f \) piecewise linear on each \([k, k+1] \), its graph forming a triangle whose peak occurs at the midpoint of \([k, k+1]\) with height \(2/k \).) Then \(\sum_{k=1}^{\infty} f(k) = 1 \) converges but \(\int_{1}^{\infty} f(x) dx = \infty \).

6.2.1. a) It converges by the Limit Comparison Test, since
\[\frac{(2k+5)(3k^2 + 2k - 1)}{1/k^2} \to \frac{2}{3} \neq 0 \] as \(k \to \infty \).

b) It converges by the Comparison Test and the Geometric Series Test, since \(0 \leq (k-1)/(k2^k) \leq 1/2^k \).

c) Since \(p > 1 \), choose \(c > 0 \) such that \(p - \alpha > 1 \). But \(|\log x| \leq Cx^\alpha \), so \(\log k/k^p \leq C/k^{p-\alpha} \). Hence the series converges by the Comparison Test and the \(p \)-Series test.

d) Since \(\log k < \sqrt{k} \) for \(k \) large, \(k^3 \log^2 k/e^k < k^4/e^k \) for \(k \) large. But by six applications of l'Hôpital's Rule,
\[\lim_{k \to \infty} \frac{k^4/e^k}{1/k^2} = \lim_{k \to \infty} \frac{k^6}{e^k} = \lim_{k \to \infty} \frac{6!}{e^k} = 0. \]

But \(\sum_{k=1}^{\infty} e^{-k} \) is a geometric series which converges, so by Theorem 6.16ii, \(\sum_{k=1}^{\infty} k^4/e^k \) converges. Thus the original series converges by the Comparison Test.

e) It converges by the Limit Comparison Test, since
\[\frac{(\sqrt{k} + \pi)/(2 + k^{3/5})}{1/k^{11/16}} \to 1 \neq 0 \] as \(k \to \infty \).

f) \(k \geq 3 \) implies \(\log k \geq \log 3 > \log e = 1 \), so \(\log k \geq p := \log 3 \). Thus \(k^{\log k} \geq k^p \) for \(k \geq 3 \), and it follows from the Comparison Test that \(\sum_{k=1}^{\infty} k^{\log k} \) converges.

6.2.2. a) It diverges by the Limit Comparison Test since
\[\frac{(3k^3 + k - 4)/(5k^4 - k^2 + 1)}{1/k} \to \frac{3}{5} \neq 0 \] as \(k \to \infty \).

b) Since \((\sqrt{k}/k) \geq (1/k) \), this series diverges by the Comparison Test.

c) \((k+1)/k \geq 1\) so the terms of this series are all \(\geq 1 \). Thus the original series diverges by the Divergence Test.

d) Let \(f(x) = (x(\log x)^p)^{-1} \) for \(x > 0 \). Since
\[f'(x) = -(x \log^p x)^{-2}(p \log^{p-1} x + \log^p x) \leq 0 \]

for \(x > 1 \), \(f(x) \) is decreasing for \(x > 1 \). Since

\[
\int_1^\infty \frac{dx}{x \log^p x} = \int_1^\infty \frac{du}{u^p} = \infty
\]

for \(p \leq 1 \), this series diverges by the Integral Test.

6.2.3. Let \(M \geq a_k \) and note that \(1/(k+1)^p \leq 1/k^p \) for all \(k \in \mathbb{N} \). Thus the series \(a_k/(k+1)^p \) has nonnegative terms and is dominated by \(M/k^p \). It follows from the Comparison Test and the \(p \)-Series Test that this series converges for all \(p > 1 \).

6.2.4. Since \(\log^p(k+1) \geq \log^p k \), we have

\[
\sum_{k=2}^{\infty} \frac{1}{k \log^p(k+1)} \geq \sum_{k=2}^{\infty} \frac{1}{k \log^p k}.
\]

But by the Integral Test, this last series converges when \(p > 1 \). Hence by the Comparison Test, the original series converges when \(p > 1 \). Similarly,

\[
\sum_{k=2}^{\infty} \frac{1}{k \log^p(k+1)} = \sum_{k=2}^{\infty} \frac{1}{(k+1) \log^p(k+1)} \leq \sum_{k=3}^{\infty} \frac{1}{k \log^p k}
\]

diverges when \(p \geq 1 \).

6.2.5. When \(p \leq 0 \) use the Comparison Test, since in this case, \(k^p \geq 1 \) for all \(k \in \mathbb{N} \), so the series is dominated by \(\sum_{k=1}^{\infty} |a_k| \). When \(p < 0 \), the result is false, since \(a_k = 1/k^{1-p} \) generates a convergent series by the \(p \)-Series Test \((1-p) \) is GREATER than \(1 \) in this case), but \(|a_k|/k^p = 1/k \) which generates the harmonic series, which diverges.

6.2.6. a) If \(a_n/b_n \to 0 \) then \(a_n \leq b_n \) for \(n \) large. If \(\sum_{k=1}^{\infty} b_k \) converges, then it follows from the Comparison Test that \(\sum_{k=1}^{\infty} a_k \) converges.

b) If \(a_n/b_n \to \infty \) then \(a_n \geq b_n \) for \(n \) large. If \(\sum_{k=1}^{\infty} b_k \) diverges, then it follows from the Comparison Test that \(\sum_{k=1}^{\infty} a_k \) diverges.

6.2.7. Since \(b_n \to 0 \), it surely is bounded. Thus \(a_k b_k \) is nonnegative and dominated by \(M a_k \). Hence the product converges by the Comparison Test. Notice, we really only need that one of the series is bounded and the other convergent.

6.2.8. Notice that \(ak+b \neq 0 \) for \(k \in \mathbb{N} \), since otherwise, \(b/a = -k \in \mathbb{Z} \). Also notice that \((1/k^q)\) is \([-1/(ak+b)]\) is bounded. Since \(a_k+b \) and \(a \) are both positive or both negative for large \(k \), the terms \(\frac{1}{(ak+b)} \) are eventually all positive or all negative. It follows from the Limit Comparison Test that we need only consider \(\sum_{k=1}^{\infty} (k q)^{-1} \).

If \(0 < q \leq 1 \) then \(1/q \geq 1 \) so \(\sum_{k=1}^{\infty} (k q)^{-1} \geq \sum_{k=1}^{\infty} 1/k = \infty \) diverges. If \(q > 1 \) then the geometric series \(\sum_{k=1}^{\infty} (k q)^{-1} \geq \sum_{k=1}^{\infty} 1/q < \infty \). Thus the original series diverges when \(0 < q \leq 1 \) and converges when \(q > 1 \).

6.2.9. If \(s_n := \sum_{k=1}^{n} a_k \) converges then so does \(s_{2n+1} \). Thus

\[
\sum_{k=1}^{\infty} (a_{2k} + a_{2k+1}) = \lim_{n \to \infty} (a_2 + a_3) + \ldots + (a_{2n} + a_{2n+1}) = \lim_{n \to \infty} s_{2n+1}
\]

converges. Conversely, if \(L := \sum_{k=1}^{\infty} (a_{2k} + a_{2k+1}) \) converges then

\[
\sum_{k=1}^{2n+1} a_k = \sum_{k=1}^{2n} (a_{2k} + a_{2k+1}) \to L \quad \text{and} \quad \sum_{k=2}^{2n+1} a_k = -a_{2n+1} + \sum_{k=2}^{2n+1} a_k \to L
\]

as \(n \to \infty \). Therefore, \(\sum_{k=1}^{\infty} a_k = a_1 + L \) converges.

6.2.10. If \(p \leq 0 \), then the series diverges by the Divergence Test. If \(p > 0 \), then \(\log(\log(\log k)) > 2/p \) for large \(k \) implies that \(p \log(\log(\log k)) > 2 \) for large \(k \). It follows that

\[
\frac{1}{\log(\log k)^p \log k} = \frac{1}{\epsilon^p \log k \log(\log(\log k))} < \frac{1}{\epsilon^2 \log k} = \frac{1}{k^2}.
\]

Thus the original series converges by the Comparison Test.
6.3 Absolute Convergence.

6.3.0. a) True. Since

\[\lim_{k \to \infty} \sup |a_k|^{1/k} = \lim_{k \to \infty} |a_k|^\alpha = a_0 \]

by Remark 6.2.1ii and \(a_0 < 1 \), it follows from the Root Test that \(\sum_{k=1}^{\infty} a_k^\alpha \) is absolutely convergent.

b) False. If \(a_k = 1/k^2 \), then \(\sum_{k=1}^{\infty} a_k \) is absolutely convergent, but \(|a_k|^{1/k} \to 1 \) as \(k \to \infty \).

c) False. If \(a_k = -1/k \) and \(b_k = 1/k^2 \), then \(a_k \leq b_k \) for all \(k \in \mathbb{N} \) and \(\sum_{k=1}^{\infty} b_k \) converges absolutely, but \(\sum_{k=1}^{\infty} a_k \) diverges.

d) True. If \(\sum_{k=1}^{\infty} a_k \) converges absolutely, then \(|a_k| \leq 1 \) for large \(k \). But \(|a_k| \leq 1 \) implies \(|a_k|^\alpha \leq |a_k| \). Hence, \(|a_k|^\alpha \leq |a_k| \) for large \(k \), and it follows from the Comparison Theorem that \(\sum_{k=1}^{\infty} a_k^\alpha \) converges absolutely.

6.3.1. a) Since \([1/(k+1)]/[1/k] = 1/(k+1) \to 0 \) as \(k \to \infty \), this series converges by the Ratio Test.

b) Since \(\sqrt[1]{1/k^k} = 1/k \to 0 \) as \(k \to \infty \), this series converges by the Root Test.

c) Since \((e^{k+1}/(k+1))/(e^k/k!) = \pi/(k+1) \to 0 \) as \(k \to \infty \), this series converges by the Ratio Test.

d) Since by L'Hôpital's Rule \(\sqrt{(k/(k+1))^e} = (k/(k+1))^k \to e^{-1} \) as \(k \to \infty \), this series converges by the Root Test.

6.3.2. a) The Ratio Test gives 1, but the series converges by the Comparison Test since \(k^e \) implies \(\log k > 5 \) so

\[\frac{k^3}{(k+1)e^k} < \frac{k^3}{(k+1)^2} \to \frac{1}{k^2} \]

b) It converges by the Ratio Test, since

\[\frac{(k+1)^{100}/e^{k+1}}{k^{100}/e^k} = \frac{((k+1)/k)^{100}}{e} \to \frac{1}{e} \]

as \(k \to \infty \).

c) It converges by the Root Test, since

\[\sqrt[k]{a_k} \equiv \frac{k+1}{2k+3} \to \frac{1}{2} < 1. \]

d) It converges by the Ratio Test, since

\[\frac{|a_{k+1}|}{|a_k|} = \frac{2k+1}{(2k+1)(2k+2)} \to 0 \]

as \(k \to \infty \).

e) It converges by the Root Test, since

\[|a_k|^{1/k} = \frac{(k-1)!}{k!} + 1 < \frac{(k-1)!}{k!} = \frac{1}{k} \to 0 \]

as \(k \to \infty \).

f) It converges by the Root Test, since

\[\sqrt[k]{a_k} \equiv \frac{3 + (-1)^k}{5} \]

has a limit supremum of \(4/5 \).

g) It diverges by the Root Test, since

\[\sqrt[k]{a_k} \equiv \frac{3 - (-1)^k}{\pi} \]

has a limit supremum of \(4/\pi \).

6.3.3. a) By the Integral Test (see Exercise 6.2.2d) it converges for all \(p > 1 \) and diverges for \(0 < p \leq 1 \). It also diverges for \(p \leq 0 \) by the Divergence Test. Therefore, this series converges if and only if \(p > 1 \).

b) It diverges for all \(p > 0 \) since \(\log k \leq Ck^{1/p} \) implies \(1/\log^p k \geq 1/k \) for \(k \geq 2 \). If \(p \leq 0 \), then the series diverges by the Divergence Test.

c) If \(p = 0 \), the series obviously doesn’t make sense, so we can suppose that \(p \neq 0 \). We shall use the Ratio Test. Since
\[
\frac{a_{k+1}}{a_k} = \frac{1}{|p|} \left(\frac{k+1}{k} \right)^p - \frac{1}{|p|}
\]
as \(k \to \infty \), \(\sum_{k=1}^{\infty} k^p/p^k \) converges absolutely when \(|p| > 1 \) and diverges when \(|p| < 1 \). By inspection, it does not converge absolutely when \(|p| = 1 \). Therefore, the series converges absolutely if and only if \(|p| > 1 \).

d) Since
\[
\frac{1}{\sqrt[k]{k}(k^p - 1)} = \frac{k^p}{k^{p/2}} \to 1
\]
as \(k \to \infty \), it follows from the Limit Comparison Test and the p-Series Test that this series converges if and only if \(p + 1/2 > 1 \), i.e., \(p > 1/2 \).

e) Rationalizing the numerator, the terms of this series look like \(1/\sqrt[k]{k^p + 1} + k^p \). By the Limit Comparison Test, \(\sum_{k=1}^{\infty} 1/\sqrt[k]{k^p + 1} + k^p \) converges if and only if \(\sum_{k=1}^{\infty} 1/k^p \) converges, i.e., if and only if \(p > 1 \). Since \(2k^p \leq \sqrt[k]{k^p + 1} + k^p \leq 2\sqrt[k]{k^p + 1} \), it follows from the Limit Comparison Test that the original series converges if and only if \(p > 1 \).

f) We shall use the Ratio Test. Since
\[
\frac{a_{k+1}}{a_k} = 2^p \left(\frac{k+1}{k} \right)^k - \frac{2^p}{e}
\]
as \(k \to \infty \), by L’Hopital’s Rule, \(\sum_{k=1}^{\infty} 2^p k!/k^k \) converges absolutely when \(2^p < e \), i.e., when \(p < \log_2(e) \), and diverges when \(p > \log_2(e) \). When \(p = \log_2(e) \), we compare the series with \(\sqrt{k} \). Indeed, by Stirling’s Formula,
\[
\frac{e^{\frac{k}{k}}}{\sqrt{k}} = \sqrt{2\pi}
\]
as \(k \to \infty \). Therefore, the original series diverges when \(p = \log_2(e) \).

6.3.4. Notice that \(\frac{1}{a_{k+2}} = \sqrt[k]{k} \mid x \mid \to a \mid x \mid \) as \(k \to \infty \). Hence if \(a \neq 0 \), then it follows from the Root Test that this series converges absolutely when \(a|x| < 1 \), i.e., \(|x| < 1/a \). If \(a = 0 \), then the limit is zero for all \(x \), so by the Root Test the series converges absolutely for all \(x \in \mathbb{R} \).

6.3.5. Notice that all \((-1)^ka_k \)'s are nonnegative. Hence \(\sum_{k=1}^{\infty} a_k \) converges absolutely by the Ratio Test, since
\[
\frac{a_{k+1}}{a_k} = \left(1 + (k+1) \sin \left(\frac{1}{k+1} \right) \right)^{-1} - \frac{1}{2}
\]
as \(k \to \infty \) by L’Hôpital’s Rule.

6.3.6. a) Since \(a_{kj} \geq 0 \), \(0 \leq \sum_{j=1}^{N} a_{kj} \leq \sum_{j=1}^{\infty} a_{kj} = A_k \) for all \(N \in \mathbb{N} \). Hence by the Comparison Test,
\[
\sum_{j=1}^{N} \sum_{k=1}^{\infty} a_{kj} = \sum_{k=1}^{\infty} \sum_{j=1}^{N} a_{kj} \leq \sum_{k=1}^{\infty} A_k = \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} a_{kj}.
\]
Taking the limit of this inequality as \(N \to \infty \) we obtain the desired inequality.

b) By part a), \(\sum_{k=1}^{\infty} a_{kj} \) converges. Hence by reversing the roles of \(k \) and \(j \), we obtain the reverse inequality.

c) By inspection, \(\sum_{j=1}^{\infty} a_{kj} = 0 \) for all \(k \in \mathbb{N} \) but \(\sum_{k=1}^{\infty} a_{kj} = 1 \) if \(j = 1 \) and 0 if \(j > 1 \). Therefore,
\[
\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} a_{kj} = 0 \neq 1 = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{kj}.
\]

6.3.7. a) Since \(a_k \to 0 \) as \(k \to \infty \), \(|a_k| < 1 \) for \(k \) large. Hence \(|a_k|^p \leq |a_k| \) for \(k \) large and it follows from the Comparison Test that \(\sum_{k=1}^{\infty} |a_k|^p \) converges.

b) If \(\sum_{k=1}^{\infty} k^p a_k \) converges for some \(p > 1 \), then \(k^p a_k \to 0 \) as \(k \to \infty \), i.e., \(k^p |a_k| < 1 \) for large \(k \). Thus \(|a_k| \leq 1/k^p \) for large \(k \). Since \(p > 1 \), it follows from the Comparison Test that \(\sum_{k=1}^{\infty} |a_k| \) converges, a contradiction.
6.3.8. a) The middle inequality is obvious since the infimum of a set is always less than or equal to its supremum.

To prove the right-most inequality, suppose that \(r = \lim \sup_{k \to \infty} a_{k+1}/a_k \). We may suppose that \(r \neq \infty \). For any \(r_0 > r \), by Remark 6.22i, there is an \(N \in \mathbb{N} \) such that \(k \geq N \) implies \(a_{k+1}/a_k \leq r_0 \). Fix \(j \in \mathbb{N} \). It follows that
\[
a_{N+j} \leq a_{N+j-1}r_0 \leq a_{N+j-2}r_0^2 \leq \cdots \leq a_Nr_0^j,
\]
i.e., \(a_k \leq a_Nr_0^{k-N} \) for all \(k \geq N \). In particular, if \(n > N \), then
\[
\sup_{k > n} \sqrt[n]{a_k} \leq (a_Nr_0^{-N})^{1/k} \cdot r_0.
\]
Taking the limit of this last inequality as \(k \to \infty \), we see that \(\lim \sup_{k \to \infty} \sqrt[n]{a_k} \leq r_0 \). Finally, letting \(r_0 \downarrow r \), we conclude that \(\lim \sup_{k \to \infty} \sqrt[n]{a_k} \leq r \), as required.

To prove the left-most inequality, repeat the steps above, using part a) in place of Remark 6.22i, but with infimum in place of supremum and \(r_1 < r \) in place of \(r_0 > r \), proves part c).

d) If \(|b_{k+1}/b_k| \to r \) as \(k \to \infty \), then by Remark 6.22iii and part b), \(\lim \sup_{k \to \infty} |b_{k+1}/b_k| = r = \lim \inf_{k \to \infty} |b_{k+1}/b_k| \).

We conclude from part c) that \(\lim \sup_{k \to \infty} |b_k| = \lim \inf_{k \to \infty} |b_k| = r \). But if we translate this back into \(\varepsilon, \delta \) language, we conclude that \(|b_k| \to r \) as \(k \to \infty \).

6.3.9. By hypothesis,
\[
\sum_{k=1}^{\infty} \frac{1}{(2k)^2} = \sum_{k=1}^{\infty} \frac{1}{(2k)^2} \cdot \frac{\pi^2}{24}.
\]
Therefore,
\[
\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} = \sum_{k=1}^{\infty} \frac{1}{(2k)^2} - \sum_{k=1}^{\infty} \frac{1}{(2k)^2} = \frac{\pi^2}{6} - \frac{\pi^2}{24} = \frac{\pi^2}{8}.
\]

6.3.10. Since each \(a_k^+ \) and \(-a_k^- \) (where \(a_k \neq 0 \)) is either \(a_k \) or 0, it suffices to show there are integers \(0 < k_1 < k_2 < k_3 < \ldots \) such that \(b_1 = a_1^+ \), \(b_2 = a_2^+ \), \ldots, \(b_{k_1} = a_{k_1}^+ \), \(b_{k_1+1} = -a_{k_1}^- \), \ldots, \(b_{k_2} = -a_{k_2}^- \), \(b_{k_2+1} = a_{k_2+1}^+ \), \ldots, and \(s_n = \sum_{j=1}^{n} b_j \), then \(\lim_{n \to \infty} s_n = x \) and \(\sup_{n \to \infty} s_n = y \). We suppose for simplicity that \(x \) and \(y \) are both finite.

Since \(\sum_{k=1}^{\infty} a_k^+ = \infty \), choose an integer \(k_1 \in \mathbb{N} \) least such that
\[
s_{k_1} := b_1 + b_2 + \cdots + b_{k_1} := a_1^+ + a_2^+ + \cdots + a_{k_1}^+ > y.
\]

Since \(b_1 \) is least, \(s_{k_1-1} \leq y \), hence \(s_{k_1} \leq y + b_1 \). Similarly, since \(\sum_{k=1}^{\infty} a_k^- = \infty \) we can choose an integer \(k_1 \) least such that
\[
s_{k_2} := b_1 + b_2 + \cdots + b_{k_2} := a_1^- - a_2^- - \cdots - a_{k_2}^- < x,
\]
and \(s_{k_2} \leq x + b_1 \). Since the \(-a_k^- \)'s are nonpositive, it is clear that \(s_\ell \leq s_{k_2} \leq y + b_{k_2} \) for \(k_1 < \ell \leq k_2 \). Therefore,
\[
s_{k_2} > y \quad \text{and} \quad x + b_{k_2} \leq s_\ell \leq y + b_{k_2}
\]
for all \(k_1 \leq \ell \leq k_2 \). By a similar argument, if \(k_2 > k_1 \) is least such that \(s_{k_2} > y \), then \(s_{k_1} < x \) and \(x + b_{k_2} \leq s_\ell \leq x + b_{k_2} \) for all \(k_1 \leq \ell \leq k_2 \). In particular,
\[
y < \sup_{k_1 \leq \ell \leq k_2} s_\ell \leq y + \max\{b_{k_1}, b_{k_2}\} \leq y + \sup_{\ell \geq k_1} b_\ell.
\]
In the same way, if \(r_2 > r_3 \) is least such that \(s_{r_2} < x \), then
\[
x + \inf_{\ell \geq r_2} b_\ell \leq \sup_{k_1 \leq \ell \leq k_2} s_\ell < x.
\]

Continuing this process, we generate integers \(k_1 < r_1 < k_2 < r_2 < \ldots \) such that for each \(j \in \mathbb{N} \),
\[
y < \sup_{k_1 \leq \ell \leq k_{j+1}} s_\ell \leq y + \sup_{\ell \geq k_1} b_\ell \quad \text{and} \quad x + \inf_{\ell \geq r_2} b_\ell \leq \inf_{r_2 \leq \ell \leq r_2+1} s_\ell < x.
\]

59

The first of these inequalities implies
\[y < \sup_{x \in A} x \leq y + \sup_{x \in B} x. \]
Taking the limit of this inequality as \(j \to \infty \), bearing in mind that by the Divergence Test \(b_n \to 0 \) as \(n \to \infty \), we conclude that
\[y \leq \limsup_{n \to \infty} s_n \leq y + \liminf_{n \to \infty} b_n = y. \]
This proves \(s_n \) has limit supremum \(y \). A similar argument establishes that \(s_n \) has limit infimum \(x \).

6.3.11. By Exercise 4.4.4 and the Squeeze Theorem, it suffices to show that \(s_n := \sum_{k=0}^{n} (-1)^k x^{2k+1}/(2k+1)! \) converges as \(n \to \infty \) for all \(x \in \mathbb{R} \). But it does converge by the Ratio Test:
\[
\left| \frac{(-1)^{k+1} x^{2k+3}/(2k+3)!}{(-1)^{k} x^{2k+1}/(2k+1)!} \right| = \frac{|x^2|}{(2k+2)(2k+3)} \to 0
\]
for all \(x \in \mathbb{R} \). A similar argument works for the cosine series.

6.4 Alternating series.

6.4.9. a) True. If \(\sum_{k=1}^{\infty} b_k \) converges, then its partial sums are bounded. Hence apply Dirichlet's Test to \(a_k \downarrow 0 \) and \(\sum_{k=1}^{\infty} b_k \).

b) False. Let \(a_k = (-1)^k / k \). Then \(\sum_{k=1}^{\infty} (-1)^k a_k = \sum_{k=1}^{\infty} 1/k \), which diverges.

c) False. Let \(a_k = 1/k \) if \(k \) is odd and \(a_k = 2/k \) if \(k \) is even. Then
\[
a_{2k} - a_{2k+1} = \frac{2}{2k} - \frac{1}{2k+1} = \frac{k+1}{2k^2 + k}.
\]
The series associated with this last fraction diverges by the Limit Comparison Test (compare it with \(1/k \)). Therefore, \(\sum_{k=1}^{\infty} (-1)^k a_k \) diverges.

d) False. Let \(a_k = 1/k^2 \) if \(k \) is odd and \(a_k = 2/k^2 \) if \(k \) is even. Since \(2k+1 < k^2 \) for \(k \geq 3 \) implies \((k+1)^2 < 2k^2 \), it is easy to check that \(a_k \) is not monotone when \(k > 3 \). On the other hand, \(\sum_{k=1}^{\infty} (-1)^k a_k \) converges absolutely by the Comparison Test since
\[
\sum_{k=1}^{\infty} |a_k| \leq 2 \sum_{k=1}^{\infty} \frac{1}{k^2} < \infty.
\]

6.4.1. a) Clearly, \(1/k^p \downarrow 0 \) as \(k \to \infty \) for all \(p > 0 \). Therefore, the series converges by the Alternating Series Test.

b) By Example 6.32, \(\sum_{k=1}^{\infty} \sin(kx) \) has bounded partial sums for all \(x \in \mathbb{R} \). Hence the series converges by the Dirichlet Test.

c) Since \((1 - \cos(1/x))^r = -\sin(1/x)/x^2 < 0 \) for \(x \geq 1 \), \(1 - \cos(1/k) \) is decreasing. Thus the original series converges by the Alternating Series Test.

d) Since \((x/3)^r = (3^r - 1 - x \log 3 \cdot 3^r)/3^{2r} = (1 - x \log 3)/3^r < 0 \) for \(x \geq 1, k/3^k \) is decreasing. Thus the original series converges by the Alternating Series Test.

e) Let \(f(x) = \pi/2 - \arctan x \). Since \(f'(x) = -1/(1+x^2) < 0 \) for all \(x \in \mathbb{R}, f(k) \downarrow 0 \) as \(k \to \infty \). Hence this series converges by the Alternating Series Test.

6.4.2. a) By the Ratio Test, this series converges for all \(|x| < 1 \) and diverges for all \(|x| > 1 \). It converges at \(x = 1 \) (the harmonic series) and converges at \(x = -1 \) (an alternating series). Thus it converges if and only if \(x \in [-1,1) \).

b) Since \(x^{2k}/2^k = (x^2/2)^k \), this series is geometric. Hence, it converges if and only if \(|x^2| < 2 \), i.e., if and only if \(x \in (-\sqrt{2}, \sqrt{2}) \).

c) By the Ratio Test, this series converges when \(|x| < 1 \) and diverges when \(|x| > 1 \). When \(x = 1 \) it converges by the Alternating Series Test. When \(x = -1 \) it diverges by the Limit Comparison Test (compare it with \(1/k \)).

d) The absolute value of the ratio of successive terms of this series is given by
\[
k\sqrt{k+1} |x+2|/((k+1)\sqrt{k+2}).
\]
Thus by the Ratio Test, this series converges when \(|x+2| < 1 \) (i.e., when \(-3 < x < -1 \)) and diverges when \(|x+2| > 1 \). If \(x = -1 \) or \(x = -3 \), this series is \(\sum_{k=1}^{\infty} (1/k)/((k+1)\sqrt{k+1}) \) which converges absolutely by the Limit Comparison Test, since \(\sum_{k=1}^{\infty} k^{-3/2} < \infty \). Therefore, the original series converges if and only if \(x \in [-3,-1] \).
6.4.3. a) Since \([(k+1)^3/(k+2)!]/[k^3/(k+1)!] = (k+1)^3/(k^3(k+2)) \to 0 \) as \(k \to \infty \), this series converges absolutely by the Ratio Test.

b) Since
\[
\left| \frac{-1(-3) \ldots (1 - 2k)(-1 - 2k)/(1 \cdot 4 \ldots (3k - 2)(3k + 1))}{-1(-3) \ldots (1 - 2k)/(1 \cdot 4 \ldots (3k - 2))} \right| = \frac{-1 - 2k}{3k + 1} = \frac{-1}{3} < 1,
\]
this series converges absolutely by the Ratio Test.

c) Since \((k+2)^{k+1}/(k^{k+1} + 1)/(1/k) = (k+2)/(k+1)^{k+1} \cdot (1/p) \to 0 \) as \(k \to \infty \) and \(e/p < 1 \), this series converges absolutely by the Ratio Test.

d) Let \(f(x) = \sqrt{x}/(x + 1) \) for \(x > 0 \). Since \(f'(x) = (1-x)/(2\sqrt{x}(x+1)^2) < 0 \) for \(x > 1 \), \(f \) is strictly decreasing on \((1, \infty) \). Thus \(f(k) \downarrow 0 \) as \(k \to \infty \) and this series converges by the Alternating Series Test. On the other hand, \((\sqrt{k}/(k+1))/(1/\sqrt{k}) = k/(k+1) \to 1 \) as \(k \to \infty \). Hence it follows from the Limit Comparison Test that \(\sum_{k=1}^{\infty} \sqrt{k}/(k+1) \) diverges. Hence the original series is conditionally convergent.

e) Since \((\sqrt{k+1}/(k+2))^{1/k} = \sqrt{k+1}/\sqrt{k} \to 1 \) as \(k \to \infty \), this series converges absolutely by the Limit Comparison Test.

6.4.4. If \(b_k \downarrow 0 \) then \(b_k - b \downarrow 0 \) as \(k \to \infty \). Moreover, if \(\sum_{k=1}^{\infty} a_k \) converges, then it surely has bounded partial sums. Hence by Dirichlet’s Test, \(\sum_{k=1}^{\infty} a_k(b_k - b) \) converges, say to \(s \). But \(\sum_{k=1}^{\infty} a_k b_k \) converges, so we can add it to both sides of \(s = \sum_{k=1}^{\infty} a_k(b_k - b) = \sum_{k=1}^{\infty} a_k b_k - \sum_{k=1}^{\infty} a_k b \). We obtain
\[
\sum_{k=1}^{\infty} a_k b_k = \sum_{k=1}^{\infty} a_k b + s.
\]

6.4.5. By Abel’s Formula, \(\sum_{k=1}^{n} a_k b_k = b_n s_n + \sum_{k=1}^{n-1} s_k (b_k - b_{k-1}) \). Take the limit of this identity as \(n \to \infty \), bearing in mind that \(s_n \) is bounded and \(b_n \to 0 \) as \(n \to \infty \). We obtain \(\sum_{k=1}^{\infty} a_k b_k = \sum_{k=1}^{\infty} a_k b_k \).

6.4.6. By Abel’s Formula, \(\sum_{k=1}^{n} a_k b_k = B_n,m a_n - \sum_{k=m}^{n-1} B_k,m (a_{k+1} - a_k) \) where \(B_n,m := \sum_{k=m}^{n} b_k \). By hypothesis, \(|B_{n,m}| \leq 2M \). Hence
\[
\left| \sum_{k=m}^{n} a_k b_k \right| \leq 2M|a_n| + 2M \sum_{k=m}^{n-1} |a_{k+1} - a_k|.
\]
Since \(a_n \to 0 \) and \(\sum_{k=1}^{\infty} |a_{k+1} - a_k| < \infty \), it follows that \(\sum_{k=1}^{\infty} a_k b_k \) is Cauchy, hence convergent.

6.4.7. Let \(c_n = \sum_{k=1}^{n} a_k b_k \) for \(n \in \mathbb{N} \). Given \(\varepsilon > 0 \) choose \(N \) so large that \(b_k > 0 \) and \(|c_k| < \varepsilon/2 \) for \(k \geq N \). By Abel’s Formula,
\[
\sum_{k=m}^{n} a_k = \sum_{k=m}^{n} a_k b_k / b_k = \sum_{k=m}^{n} c_k / b_k = c_m / b_m + \sum_{k=m}^{n-1} (c_k - c_{k+1}) \left(\frac{1}{b_{k+1}} - \frac{1}{b_k} \right).
\]
Now \(1/b_k \to 0 \) as \(k \to \infty \) so
\[
\sum_{k=m}^{\infty} a_k = \lim_{n \to \infty} \sum_{k=m}^{n-1} (c_k - c_{k+1}) \left(\frac{1}{b_{k+1}} - \frac{1}{b_k} \right)
\]
and this limit must exist. Let \(m > N \). Since the \(1/b_k \)'s are decreasing, we have by telescoping that
\[
\left| \sum_{k=m}^{n} a_k \right| \leq 2 \sup_{k \geq m} |c_k| \frac{1}{b_m} - \frac{1}{b_n} \leq 2 \sup_{k \geq m} |c_k| \left(\frac{1}{b_m} - 0 \right) \leq 2 \sup_{k \geq m} |c_k| \left(\frac{1}{b_m} \right) < \varepsilon.
\]
We conclude that \(|b_m \sum_{k=m}^{\infty} a_k| < \varepsilon \) for \(m \geq N \), i.e., \(b_m \sum_{k=m}^{\infty} a_k \to 0 \) as \(m \to \infty \).

6.4.8. By a sum angle formula and telescoping, we see that \(2 \sin(x/2) \sum_{k=1}^{n} \cos(kx) = \sum_{k=1}^{n} (\sin((k - 1/2)x) - \sin((k + 1/2)x)) = \sin(x/2) - \sin((n + 1/2)x) \). Thus
\[
\left| \sum_{k=1}^{n} \cos(kx) \right| \leq 1/|\sin(x/2)| < \infty
\]

for each fixed \(x \in (0,2\pi) \). Hence by Dirichlet’s Test, \(\sum a_k \cos(kx) \) converges for each \(x \in (0,2\pi) \). When \(x = 0 \), the series converges if and only if \(\sum_{k=1}^{\infty} a_k \) converges.

\[\left| \sum_{k=1}^{n} \sin(2k+1)x \right| \leq 2/|\sin x| < \infty \]

for each fixed \(x \in (0,\pi) \cup (\pi,2\pi) \). Hence by Dirichlet’s Test, \(\sum a_k \sin(2k+1)x \) converges for each \(x \in (0,\pi) \cup (\pi,2\pi) \). Since the series is identically zero when \(x = 0, \pi, 2\pi \), it converges everywhere on \([0,2\pi]\). But \(\sin(2k+1)x \) is periodic of period \(2\pi \). Hence this series converges everywhere on \(\mathbb{R} \).

6.5 Estimation of series.

6.5.1. a) Let \(f(x) = \pi/2 - \arctan x \). Since \(f'(x) = -1/(1 + x^2) < 0 \) for all \(x \in \mathbb{R} \), \(f(k) \downarrow 0 \) as \(k \to \infty \). Hence this series converges by the Alternating Series Test. Since \(f(100) = 0.000999, n = 100 \) terms will estimate the value to an accuracy of \(10^{-2} \).

b) Let \(f(x) = x^{2-k} - x^2 e^{-x/2} \). Since \(f'(x) = x^{2-k}(2 - x/2) < 0 \) for all \(x > 2/\log 2 \), \(f(x) \) is strictly decreasing for \(x \) large. Therefore, the series converges by the Alternating Series Test. Since \(f(15) = 0.0008, n = 15 \) terms will estimate the value to an accuracy of \(10^{-2} \).

c) Let \(a_k = (2 \cdot 4 \cdot \ldots \cdot 2k)/(1 \cdot 3 \cdot \ldots \cdot (2k-1)k^2) \) and observe that

\[a_{k+1}/a_k = (2k + 2)(2k+1)^2/(2k+1)(2k+2) = 2k^2/(2k+2)(2k+1) < 1. \]

Thus \(a_{k+1} < a_k \). Moreover, \(a_k = (2/3)(4/5)\ldots((2k-2)/(2k-1)) \cdot (2k/k^2) < 2/k \to 0 \) as \(k \to \infty \). Therefore, this series converges by the Alternating Series Test. Since \(a_0 = \approx .0105 \) and \(a_{10} \approx .0055 \), \(n = 10 \) terms will estimate the value to an accuracy of \(10^{-2} \).

6.5.2. a) \(p > 1 \) (see Exercise 6.2.4).

b) Let \(f(x) = 1/(x \log^p(x+1)) \). By Theorem 6.35,

\[-\int_n^\infty f(x) \, dx \leq s_n - s \leq f(n) - \int_n^\infty f(x) \, dx, \]

so

\[|s - s_n| \leq f(n) + \int_n^\infty f(x) \, dx. \]

Since

\[\int_n^\infty f(x) \, dx = \int_n^\infty \frac{dx}{x \log^p(x+1)} \leq \int_n^\infty \frac{dx}{x \log^p(x)} = \frac{1}{(p-1) \log^{p-1}(n)}, \]

it follows that

\[|s - s_n| \leq \frac{1}{n \log^p(n+1)} + \frac{1}{(p-1) \log^{p-1}(n)} \leq \frac{n + p - 1}{n(p-1)} \left(\frac{1}{\log^{p-1}(n)} \right). \]

6.5.3. a) Since \(\lfloor 1/(k+1) \rfloor / \lfloor 1/k \rfloor = 1/(k+1) \to 0 \) as \(k \to \infty \), this series converges by the Ratio Test. The ratio is less than or equal to \(1/3 \) for \(k > N = 1 \). Hence by Remark 6.40, \(|s_n - s| \) is dominated by \((1/3)^n/(2/3) = (1/2)(1/3)^{n-1} \). For \(n = 7 \), this last ratio is about \(0.000069 \) still a little too big, but it’s about \(0.00023 < 0.0005 \) for \(n = 8 \).

b) Since \(\sqrt[4]{k^4} = 1/k \to 0 \) as \(k \to \infty \), this series converges by the Root Test. The root is less than or equal to \(1/2 \) for \(k \geq N = 2 \). Hence by Remark 6.40, \(|s_n - s| \) is dominated by \((1/2)^{n+1}/(1/2) = (1/2)^n \) for \(n \geq 2 \). Since \(1/2^a \approx 0.000098 \) for \(n = 10 \) and \(\approx 0.000049 \) for \(n = 11 \), choose \(n = 11 \).

c) Since \((2^{k+1}/(k+1))!/(2^k/k)! = 2/(k+1) \to 0 \) as \(k \to \infty \), this series converges by the Ratio Test. The ratio is less than or equal to \(1/2 \) for \(k > N = 2 \). Hence by Remark 6.40, \(|s_n - s| \) is dominated by \((2^2/2)!/(1/2)^{n-1}/(1/2) = (1/2)^{n-1} \). Thus by the calculations in part b), choose \(n = 14 \).

d) Since by L’Hôpital’s Rule \(\sqrt[k]{(k+1)!} = (k/(k+1))^k \to e^{-1} \) as \(k \to \infty \), this series converges by the Root Test. The root is less than or equal to \(1/2 \) for \(k \geq N = 1 \) by Example 4.30. Hence by Theorem 6.40, \(|s_n - s| \) is dominated by \((1/2)^{n+1}/(1/2) = (1/2)^n \). Thus by the calculations in part b), choose \(n = 11 \).

6.5.4. Fix \(n \geq N \). If \(|a_{k+1}|/|a_k| \leq x \) for \(k > N \), then \(|a_{N+1}| \leq x |a_N|, |a_{N+2}| \leq x^2 |a_N|, \ldots \), hence \(|a_k| \leq |a_N|x^{k-N} \) for any \(k > N \). Hence given \(n \geq N \),

\[
0 \leq s - s_n = \sum_{k=n+1}^{\infty} |a_k| \leq |a_N| \sum_{k=n+1}^{\infty} x^{k-N} = |a_N| \frac{x^{2n-N+1}}{1-x}.
\]

6.6 Additional tests.

6.6.1. a) The ratio of successive terms of this series is

\[
\frac{2k+3}{2k+2} > 1.
\]

Hence \(a_{k+1} \geq a_k > 0 \), so the series diverges by the Divergence Test.

b) The ratio of successive terms of this series is

\[
\frac{2k+1}{2k+5} = 1 - \frac{4}{2k+5} = 1 - \frac{2}{k+5/2}.
\]

Hence it converges absolutely by Raabe’s Test.

c) Let \(u = \log k \) and note that \(u \to \infty \) as \(k \to \infty \). Now for \(k > e \),

\[
\frac{\log(1/|a_k|)}{\log k} = \frac{\log(\log k \log \log k)}{\log k} = \frac{(\log \log k)^2}{\log k} = \frac{\log^2 u}{u}.
\]

But the limit of this last quotient is (by L'Hôpital’s Rule twice)

\[
\lim_{u \to \infty} \frac{2 \log u \cdot (1/u)}{1} = \lim_{u \to \infty} \frac{2 \log u}{u} = 0.
\]

Hence the series diverges by the Divergence Test.

d) Applying L'Hôpital's Rule twice, we obtain

\[
p := \lim_{k \to \infty} \frac{k \log(\sqrt{k}/(\sqrt{k} - 1))}{\log k} = \lim_{k \to \infty} \frac{\log(\sqrt{k}/(\sqrt{k} - 1))}{\log k/k}
\]

\[
= \lim_{k \to \infty} \frac{\sqrt{k} - 1}{\sqrt{k}} \lim_{k \to \infty} \frac{-k^2/2\sqrt{k}}{(\sqrt{k} - 1)^2(1 - \log k)}
\]

\[
= \lim_{k \to \infty} \frac{k}{(\sqrt{k} - 1)^2} \lim_{k \to \infty} \frac{-\sqrt{k}/2}{1 - \log k}
\]

\[
= \lim_{k \to \infty} \frac{-1/(4\sqrt{k})}{-1/k} = \infty.
\]

Hence the series converges absolutely by the Logarithmic Test.

6.6.2. a) It converges absolutely for all \(p > 0 \) by the Ratio Test, since

\[
\frac{(k+1)/e^{(k+1)p}}{k/e^{kp}} = \frac{k+1}{ke^p} \to \frac{1}{e^p} < 1
\]

for all \(p > 0 \). If \(p \leq 0 \), this series diverges by the Divergence Test.

b) Since \(\log((\log k)^{p \log k})/\log k = p \log \log k \to \infty \) if \(p > 0 \), this series converges absolutely for all \(p > 0 \) by the Logarithmic Test. It diverges for \(p \leq 0 \) by the Divergence Test.

c) It converges absolutely for all \(|p| < 1/e \) by the Ratio Test, since

\[
\left| \frac{(p(k+1))^{k}/(k+1)!}{(pk)^k/k!} \right| = \frac{|p(k+1)^{k+1}}{(k+1)^k} = |p| \left(\frac{k+1}{k} \right)^k \to |p| < 1
\]

63

for all $|p| < 1/e$. Similarly, if $|p| > 1/e$, this series diverges by the Ratio Test. If $p = 1/e$, then the terms of the series become

$$\frac{k^k}{e^k \cdot k!} > \frac{1}{e \sqrt{k}}$$

by Stirling’s Formula. By the Comparison Test and the p-Series Test, the original series diverges. For $p = -1/e$, the series converges conditionally by the Alternating Series Test and what we just proved.

6.6.3. a) By L'Hôpital's Rule, $\sqrt[3]{1/(\log k)^{\log k}} \to e^0 = 1$ as $k \to \infty$ so the Root Test yields $r = 1$. However, the series converges by the Logarithmic Test since $\log((\log k)^{\log k})/\log k = \log \log k \to \infty$ as $k \to \infty$.

b) The ratio of consecutive terms of this series is $(2k + 1)/(2k + 4)$ which converges to 1 as $k \to \infty$. However, since $(2k + 1)/(2k + 4) = 1 - (3/2)/(k + 2)$, the series converges by Raabe's Test.

6.6.4. Since the range of f is positive, $|f(k)| = f(k)$ for all $k \in \mathbb{N}$. Moreover, by L'Hôpital's Rule,

$$\lim_{k \to \infty} \frac{\log(1/f(k))}{\log k} = -\lim_{k \to \infty} \frac{f'(k)/f(k)}{1/k} \equiv -\alpha.$$

By the Logarithmic Test, if $-\alpha > 1$, then this series converges absolutely. Hence it surely converges.

6.6.5. If $p > 1$ is infinite, let $q = 2$. If $p > 1$ is finite, let $q = \sqrt{p}$. Note that in either case, $q > 1$. By hypothesis, $k(1 - |a_{k+1}/a_k|) > q$ for k large. (Indeed, in either case, $q < p$ so this expression is eventually bigger than q.) The inequality implies $|a_{k+1}/a_k| < 1 - q/k$ for k large. Since $q > 1$, it follows from Raabe's Test that $\sum_{k=1}^{\infty} a_k$ converges absolutely.
CHAPTER 7

7.1 Uniform Convergence of Sequences.

7.1.1. a) Given $\varepsilon > 0$ choose N so large that $N > \max\{|a|, |b|\}/\varepsilon$. Then $n \geq N$ and $x \in [a, b]$ imply

$$\frac{|x/n|}{x^3 + nx^{36}} < \frac{1}{n} \leq \max\{|a|, |b|\}/N < \varepsilon.$$

Hence $x/n \to 0$ uniformly on $[a, b]$.

b) Given $x \in (0, 1)$, $nx \to 0$, hence $1/(nx) \to 0$ as $n \to \infty$. If $\{1/(nx)\}$ were uniformly convergent, then there is an $N \in \mathbb{N}$ such that $|1/(N^2)| \leq 1$ for all $x \in (0, 1)$. Applying this inequality to $x = 1/(2N)$ we obtain $2 = 1/(N \cdot (1/(2N)) \leq 1$, a contradiction.

7.1.2. a) Since $(3^{36} + 3)/N \to 0$ as $N \to \infty$, given $\varepsilon > 0$, we can choose $N \in \mathbb{N}$ so that $0 < (3^{36} + 3)/N < \varepsilon$. Since $x \in [1, 3]$ implies $|3 - x^3| \leq 3 + 3^{36}$ and $x^3 + nx^{36} \geq 0 + n = n$, it follows that

$$\left| \frac{nx^{36} + 3}{x^3 + nx^{36}} - x^3 \right| \leq \frac{3 + 3^{36}}{n} \leq \frac{3 + 3^{36}}{N} < \varepsilon$$

for all $x \in [1, 3]$ and $n \geq N$. Hence $(nx^{36} + 3)/(x^3 + nx^{36}) \to x^3$ uniformly on $[1, 3]$, so by Theorem 7.10,

$$\lim_{n \to \infty} \int_1^3 \frac{nx^{36} + 3}{x^3 + nx^{36}} \, dx = \int_1^3 x^3 \, dx = \frac{3^4 - 1}{3^4}.$$

b) Since $e > 1$ implies $e^{4/n} > 1$ and $e^{4/n} \to 1$ as $N \to \infty$, given $\varepsilon > 0$, we can choose $N \in \mathbb{N}$ so that

$$0 < e^{4/n} - 1 < \varepsilon.$$

Since $x \in [0, 2]$ implies $e^{x/n} \leq e^{x}$, it follows that

$$|e^{x/n} - 1| = e^{x/n} - 1 \leq e^{x/n} - 1 \leq e^{4/n} - 1 < \varepsilon$$

for all $x \in [0, 1]$ and $n \geq N$. Hence $e^{x/n} \to 1$ uniformly on $[0, 2]$, so by Theorem 7.10,

$$\lim_{n \to \infty} \int_0^2 e^{x/n} \, dx = \int_0^2 \, dx = 2.$$

c) Let $x \in [0, 3]$. Since $\sin(x/n) > 0$ for $n \geq 3$, we have $f(x) := \sin(x/n) + x + 1 + \sqrt{x + 1} > \sqrt{1 + 1} = 2$ for $n \geq 3$. Given $\varepsilon > 0$, choose $N \in \mathbb{N}$ so that $N \geq 3$ and $2/N < \varepsilon$. Since $0 < \sin(x/n) \leq x/n$, it follows by rationalizing the numerator that

$$\left| \sin(x/n) + x + 1 - \sqrt{x + 1} \right| = \frac{\sin(x/n) + x + 1 - (x + 1)}{\sin(x/n) + x + 1 + \sqrt{x + 1}}$$

$$\leq \frac{x/n}{2} \leq \frac{3}{2n} < \varepsilon$$

for all $x \in [0, 3]$ and $n \geq N$. Hence $\sin(x/n) + x + 1 \to \sqrt{x + 1}$ uniformly on $[0, 3]$, so by Theorem 7.10,

$$\lim_{n \to \infty} \int_0^3 \sin(x/n) + x + 1 \, dx = \int_0^3 \sqrt{x + 1} \, dx = \frac{2}{3} (x + 1)^{3/2} \bigg|_0^3 = \frac{14}{3}.$$

7.1.3. Choose N so large that $|f(x) - f_n(x)| < 1$ for all $x \in E$ and $n \geq N$. Set $M := \sup_{x \in E} |f_n(x)|$ and observe by the Triangle Inequality that $|f(x) - f_n(x)| \leq |f(x) - f_n(x)| + |f_n(x)| < 1 + M$ for all $x \in E$. Therefore, $|f_n(x)| \leq |f(x)| + 1 \leq (1 + M) + 1 = 2 + M$ for all $n \geq N$ and $x \in E$, i.e., $\{f_n\}_{n \geq N}$ is uniformly bounded on E. In particular,

$$|f_n(x)| \leq M := \max(2 + M, \sup_{x \in [a, b]} |f_1(x)|, \ldots, \sup_{x \in [a, b]} |f_{N-1}(x)|) < \infty$$

for all $n \in \mathbb{N}$ and $x \in E$.

7.1.4. Since g is continuous on $[a, b]$, it is bounded by the Extreme Value Theorem, i.e., there is a $C > 0$ such that $|g(x)| \leq C$ for all $x \in [a, b]$. Since f is bounded and $\{f_n\}$ is uniformly bounded, there is an $M > 0$ such that $\max\{|f_n(x) - f(x)| : x \in [a, b], n \in \mathbb{N}\} \leq M$. Given $\varepsilon > 0$ choose $\delta > 0$ so small that $a < x < a + \delta$ or

65

\[b \geq x > b - \delta \text{ implies } |g(x)| < \varepsilon / M. \] By hypothesis, \(f_n \to f \) uniformly on \([a + \delta, b - \delta]\). Thus choose \(N \) so large that \(x \in [a + \delta, b - \delta] \) and \(n \geq N \) imply \(|f_n(x) - f(x)| < \varepsilon / C \). If \(n \geq N \) and \(x \in [a, b] \), then

\[
|f_n(x)g(x) - f(x)g(x)| = |f_n(x) - f(x)||g(x)| < \begin{cases}
(\varepsilon / C) : C = \frac{\varepsilon}{\varepsilon / M} = \varepsilon & x \in [a + \delta, b - \delta] \\
\varepsilon / M & x \notin [a + \delta, b - \delta].
\end{cases}
\]

Therefore, \(f_n g \to fg \) uniformly on \([a, b] \).

7.1.5. a) Given \(\varepsilon > 0 \) choose \(N \) so large that \(n \geq N \) and \(x \in E \implies |f_n(x) - f(x)| < \varepsilon / \max(2, |a| + 1) \) and \(|g_n(x) - g(x)| < \varepsilon / \max(2, |a| + 1) \). Then \(n \geq N \) and \(x \in E \) imply

\[
|f(x + g(x)) - (f_n + g_n)(x)| \leq |f(x) - f_n(x)| + |g(x) - g_n(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon
\]

and

\[
|(\alpha f)(x) - (\alpha f_n)(x)| = |\alpha||f(x) - f_n(x)| < |\alpha| \frac{\varepsilon}{|a| + 1} < \varepsilon.
\]

b) See Theorem 2.12.

c) Given \(\varepsilon > 0 \) choose \(M > 0 \) so that \(\sup\{|f(x)|, |g(x)| : x \in E\} \leq M \). Choose \(N_1 \) so large that \(n \geq N_1 \) and \(x \in E \implies |f_n(x) - f(x)| < \varepsilon / (2M) \) and \(|g_n(x) - g(x)| < \varepsilon / (2M) \). Since \(g_n \to g \) and \(g \) is bounded by \(M \), choose \(N_2 \) so large that \(|g_n(x)| < 2M \) for all \(n \geq N_2 \) and \(x \in E \). If \(n \geq N := \max\{N_1, N_2\} \) and \(x \in E \) then

\[
|f(x + g(x)) - (f_n + g_n)(x)| \leq |f(x) - f_n(x)||g_n(x)| + |f(x)||g(x) - g_n(x)| < \frac{2\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.
\]

d) Let \(f_n(x) = 1/n \) and \(g_n(x) = 1/x \). Then \(f_n \to 0 \) uniformly on \(\mathbb{R} \) and \(g_n(x) \to 1/\varepsilon \) uniformly on \((0, \infty)\), in particular, on \((0, 1)\), as \(n \to \infty \). However, by Exercise 7.1.1b, \(f_n(x)g_n(x) = 1/(nx) \) does not converges uniformly on \((0, 1)\).

7.1.6. Given \(\varepsilon > 0 \) choose \(\delta > 0 \) so small that \(x, y \in E \) and \(|x - y| < \delta \implies |f_n(x) - f_n(y)| < \varepsilon / 3 \). If \(x, y \in E \) and \(|x - y| < \delta \), then

\[
|f(x) - f(y)| \leq |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)| < \varepsilon.
\]

Hence \(f \) is uniformly continuous on \(E \).

7.1.7. Let \(\varepsilon > 0 \) and choose \(\delta \) such that \(|x - y| < \delta \) implies \(|f(x) - f(y)| < \varepsilon \). Let \(x \in \mathbb{R} \) and choose \(N \) such that \(n \geq N \) implies \(|\alpha| < \delta \). If \(n \geq N \), then \(|x + y_n - x| = |y_n| < \delta \), so \(|f_n(x) - f(x)| = |f(x + y_n) - f(x)| < \varepsilon \).

7.1.8. Choose \(N \) so large that \([a, b] \subset [-N, N] \). Let \(x \in [a, b] \) and \(n \geq N \). Then \(x \geq -N \geq -n, x/n \geq 1 \), and it follows from Bernoulli’s Inequality that \((1 + x/n)^n \geq e^x \) for \(n \geq N \).

Let \(n > N, x > 0 \), and set \(f(x) = e^x - (1 + x/n)^n \). Then

\[
f'(x) = e^x - \left(1 + \frac{x}{n}\right)^{n-1} \geq e^x - \left(1 + \frac{x}{n}\right)^n > 0
\]

since \(1 + x/n > 1 \). Thus \(f \) takes its maximum on \([a, b] \) at \(x = b \). Therefore,

\[
|e^x - \left(1 + \frac{x}{n}\right)^n| \leq e^b - \left(1 + \frac{b}{n}\right)^n \to 0
\]

as \(n \to \infty \). It follows that \((1 + x/n)^n \to e^x \) uniformly on \([a, b] \). In particular,

\[
\lim_{n \to \infty} \int_a^b \left(1 + \frac{x}{n}\right)^n e^{-x} \, dx = \int_a^b dx = b - a.
\]

7.1.9. a) By the Extreme Value Theorem, \(f \) is bounded on \([a, b] \) and there are positive numbers \(\varepsilon_0 \) and \(M \) such that \(\varepsilon_0 < |g(x)| < M \) for all \(x \in [a, b] \). Hence \(1/M < 1/|g(x)| < 1/\varepsilon_0 \) for all \(x \in [a, b] \) and it follows that \(1/g \) is bounded on \([a, b] \) and \(1/(2M) < 1/|g_n(x)| < \varepsilon_0 \) for large \(n \) and all \(x \in [a, b] \), i.e., \(1/g_n \) is defined and bounded on \([a, b] \). Hence by Exercise 7.1.5c, \(f_n/g_n = f_n \cdot (1/g_n) \to f \cdot (1/g) = f/g \) uniformly on \([a, b] \) as \(n \to \infty \).
b) Let \(f_n(x) = 1/n \) and \(g_n(x) = x \). Then \(f_n \to 0 \) uniformly on \(\mathbb{R} \), \(|g_n| > 0 \) for \(x \neq 0 \), and \(g_n(x) \to x \) uniformly on \((0, \infty)\), in particular, on \((0, 1)\), as \(n \to \infty \). However, by Exercise 7.1.1b, \(f_n(x)/g_n(x) = 1/(nx) \) does not converge uniformly on \((0, 1)\).

7.1.10. Given \(\epsilon > 0 \) choose \(N_0 \) so large that \(k \geq N_0 \) and \(x \in E \) imply \(|f_n(x) - f(x)| < \epsilon/2 \). Since \(\sum_{k=1}^{N_0} |f_k(x) - f(x)| \) is bounded on \(E \), choose \(N \) such that \((1/n) \sum_{k=1}^{N_0} |f_k(x) - f(x)| < \epsilon/2 \) for all \(n \geq N \) and \(x \in E \). If \(x \in E \) and \(n \geq \max\{N_0, N\} \) then

\[
\left| \frac{1}{n} \sum_{k=1}^{N} f_k(x) - f(x) \right| \leq \frac{1}{n} \sum_{k=1}^{N_0} |f_k(x) - f(x)| + \frac{\epsilon}{2} \left(1 - \frac{N_0}{n} \right) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
\]

7.1.11. Since \(f \) is integrable, there is an \(M > 0 \) such that \(|f(x)| \leq M \) for all \(x \in [0, 1] \). Choose \(n_0 \in \mathbb{N} \) so that \(1 - b_{n_0} \leq \epsilon/(2M) \) and \(N > n_0 \) so large that \(|f_n(x) - f(x)| < \epsilon/2 \) for \(n \geq N \) and \(x \in [0, 1] \). Suppose \(n \geq N \) and \(x \in [0, 1] \). Since the \(b_n \)'s are increasing, \(b_n \leq 1 \) for all \(n \in \mathbb{N} \) and \(n \geq n_0 \) imply that \(1 - b_n \leq 1 - b_{n_0} \). Therefore,

\[
\left| \int_{0}^{1} f(x) \, dx - \int_{0}^{b_n} f_n(x) \, dx \right| \leq \int_{0}^{b_n} |f(x) - f_n(x)| \, dx + \int_{b_n}^{1} |f(x)| \, dx \\
\leq \frac{\epsilon}{2} b_n + M(1-b_n) \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
\]

7.2 Uniform Convergence of Series.

7.2.1. a) Since \(|\sin(x/k)| \leq |x|/k^2 \leq \max\{|a|, |b|\}/k^2 \) for any \(x \in [a, b] \), this series converges uniformly on \([a, b]\) by the Weierstrass M-Test.

b) Let \(I = [a, \infty) \subset (0, \infty) \). Then \(x \in I \) implies \(e^{-ka} \leq e^{-kr} \). Since this last series converges (it’s Geometric with \(r = e^{-a} < 1 \), the original series converges uniformly on \([a, b]\) by the Weierstrass M-Test.

7.2.2. Clearly, \(|x|^r \leq x^k \) for \(x \in [a, b] \) and \(r = \max\{|a|, |b|\} \). Since \([a, b] \subset (-1, 1) \) implies \(r < 1 \) and the geometric series \(\sum_{k=0}^{\infty} x^k \) converges, it follows from the Weierstrass M-Test that the original series converges uniformly on \([a, b]\).

7.2.3. a) Since \(|x|^{k+1}/(k+1)!! \leq |x|^k/k! \) as \(k \to \infty \), this series converges pointwise on \(\mathbb{R} \) by the Ratio Test. Moreover, since \(x \in [a, b] \) implies \(|x|^k/k! \leq e^c/k! \), where \(c := \max\{|a|, |b|\} \), it follows from the Weierstrass M-Test that the original series converges uniformly on \([a, b]\).

b) Integrating term by term, we have

\[
\int_{a}^{b} E(x) \, dx = \sum_{k=0}^{\infty} \frac{x^{k+1}}{(k+1)!} \bigg|_{a}^{b} = b - a = E(b) - E(a).
\]

c) Clearly, \(E(0) = 1 \). Differentiating term by term, we obtain \(E'(x) = \sum_{k=0}^{\infty} x^k/k! = E(x) \). Thus \(y = E(x) \) solves the initial value problem \(y' - y = 0 \), \(y(0) = 1 \).

7.2.4. The series converges uniformly on \(\mathbb{R} \) by the Weierstrass M-Test. Hence integrating term by term, we obtain

\[
\int_{0}^{\pi/2} f(x) \, dx = \sum_{k=1}^{\infty} \frac{1}{k^2} \int_{0}^{\pi/2} \cos(kx) \, dx = \sum_{k=1}^{\infty} \frac{1}{k^3} \sin \left(\frac{k \pi}{2} \right)
\]
 Since \(\sin(k \pi/2) = -1 \) when \(k = 3, 7, \ldots \), \(\sin(k \pi/2) = 1 \) when \(k = 1, 5, \ldots \), and \(\sin(k \pi/2) = 0 \) when \(k = 2, 4, \ldots \), it follows that

\[
\int_{0}^{\pi/2} f(x) \, dx = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k - 1)^3} + \sum_{k=1}^{\infty} \frac{(-1)^{k}}{(2k + 1)^3}.
\]

7.2.5. Since \(|\sin(x/(k+1))/k| \leq |x|/(k(k+1)) \), the series converges uniformly on any closed bounded interval \([a, b]\) by the Weierstrass M-Test. In fact, for any \(x \in \mathbb{R} \),

\[
|f(x)| \leq \sum_{k=1}^{\infty} \left| \frac{\sin(x/(k+1))}{k} \right| \leq \sum_{k=1}^{\infty} \frac{|x|}{k(k+1)} = |x| \sum_{h=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+1} \right) = |x|.
\]