Positroids, non-crossing partitions, and a conjecture of da Silva

Federico Ardila M.

San Francisco State University, San Francisco, California. Universidad de Los Andes, Bogotá, Colombia.

Discrete Mathematics Seminar
Princeton University
November 19, 2015
Joint work with:
Felipe Rincón (Los Andes → Oslo) and Lauren Williams (Berkeley)

1. Positroids and non-crossing partitions.
 Trans. Amer. Math Soc., to appear
 http://arxiv.org/abs/...

2. Positively oriented matroids are representable.
 J. European Math. Soc., to appear
 http://arxiv.org/abs/...
1. Matroids

A matroid M on $[n] := \{1, \ldots, n\}$ is a collection \mathcal{B} of subsets of $[n]$ (called bases) satisfying the basis exchange axiom:

- If A, B are bases and $a \in A \setminus B$,
 there exists $b \in B \setminus A$ such that $A \setminus a \cup b$ is a basis.

All elements of \mathcal{B} have the same size, called the rank of M.

Motivating example. If K is any field and $A \in K^{m \times n}$ has rank m, the collection

$$\mathcal{B} := \{ B \subset [n] \mid \text{the submatrix } A_B \text{ is invertible} \}$$

is a matroid $M(A)$ of rank m.

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & -1 & -2 \\ 0 & 1 & 1 & 2 \end{pmatrix} \leadsto M(A) = \{12, 13, 14, 23, 24\}$$
Axiom systems for matroids

There are many equivalent ways of defining matroids:
- simplicial complex (independent sets)
- submodular function (rank function)
- closure operator (span)
- lattice (flats)
- polytope (bases) (My favorite.)

Given a matroid \mathcal{B} of subsets of $[n]$, the matroid polytope is

$$P_{\mathcal{B}} := \text{convex} \left\{ \sum_{i \in B} e_i \mid B \in \mathcal{B} \right\}.$$

$\mathcal{B} = \{12, 13, 14, 23, 24\}$
Matroid polytopes

Given a matroid \(\mathcal{B} \) (or any collection of \(d \)-subsets) on \([n]\), let

\[
P_\mathcal{B} := \text{convex} \left\{ \sum_{i \in B} e_i \mid B \in \mathcal{B} \right\}.
\]

\[\mathcal{B} = \{12, 13, 14, 23, 24\} \implies \]

Theorem (Edmonds, Gelfand-Goresky-MacPherson-Serganova)

\(\mathcal{B} \) is a matroid \(\iff \) all edges of \(P_\mathcal{B} \) have the form \(e_i - e_j \).

Remark:

basis exchanges in \(\mathcal{B} \) \(\iff \) edges of \(P_\mathcal{B} \)
2. Positroids

If $A \in \mathbb{R}^{m \times n}$ is a rank m totally nonnegative matrix (i.e., all its maximal minors are nonnegative) then $M(A)$ is called a positroid.

$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & -1 & -2 \\ 0 & 1 & 1 & 2 \end{pmatrix} \mapsto \{12, 13, 14, 23, 24\}$ is a positroid.

$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & <0 & 0 \\ 0 & 1 & 0 & >0 \end{pmatrix} \mapsto \{12, 14, 23, 34\}$ is not a positroid.

Positroids have a rich, beautiful geometric and combinatorial structure:

A. Postnikov: totally nonnegative Grassmannian

They have very interesting applications in algebra:

J. Scott: cluster algebras

and physics:

N. Arkani-Hamed et. al.: scattering amplitudes

Y. Kodama and L. Williams: KP-solitons
2. Positroids

If \(A \in \mathbb{R}^{m \times n} \) is a rank \(m \) totally nonnegative matrix (i.e., all its maximal minors are nonnegative) then \(M(A) \) is called a **positroid**.

\[
A = \begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & 0 & -1 & -2 \\
0 & 1 & 1 & 2 \\
\end{pmatrix} \mapsto \{12, 13, 14, 23, 24\} \text{ is a positroid.}
\]

\[
A = \begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & 0 & <0 & 0 \\
0 & 1 & 0 & >0 \\
\end{pmatrix} \mapsto \{12, 14, 23, 34\} \text{ is not a positroid.}
\]

Positroids have a rich, beautiful geometric and combinatorial structure:

A. Postnikov: **totally nonnegative Grassmannian**

They have very interesting applications in algebra:

J. Scott: **cluster algebras**

and physics:

N. Arkani-Hamed et. al.: **scattering amplitudes**
Y. Kodama and L. Williams: **KP-solitons**
Indexing positroids

Positroids have several axiom systems of their own:

\[(2\ 3\ 6\ 8,\ 2\ 3\ 6\ 8,\ 3\ 5\ 6\ 8,\ 4\ 5\ 6\ 8,\ 5\ 6\ 8\ 9,\ 6\ 7\ 8\ 9,\ 6\ 7\ 8\ 9,\ 2\ 6\ 8\ 9,\ 2\ 6\ 9\ 10,\ 2\ 3\ 6\ 10)\]

Grassmann necklaces

\[
\begin{array}{|c|c|c|c|}
\hline
0 & + & 0 & + \\
+ & + & + & + \\
0 & 0 & 0 & \\
+ & + & \\
\hline
\end{array}
\]

Le-diagrams

Plabic graphs

Decorated permutations
Positroid polytopes

\[B = \{12, 13, 14, 23, 24\} \quad \rightsquigarrow \]

A key result:

Theorem. *(Gelfand-Serganova ’87)*

\(B \) is a matroid \iff all edges of \(P_B \) have the form \(e_i - e_j \).

Theorem. *(Lam-Postnikov, A.-Reiner-Williams ’13)*

\(B \) is a *positroid* \iff additionally, all facets of \(P_B \) have the form \(\sum_{i \in S} x_i \leq a_S \) with \(S \) a *cyclic interval*.

Sketch of \(\implies \).

- Define \(Q \) by all ineqs \(\sum_{i \in S} x_i \leq a_S \) (\(S \) cyclic interval) sat. by \(P_B \).
- Matrix of \(Q \) is totally unimodular \(\Rightarrow \mathbb{Z}^n \) vertices \(\Rightarrow 0/1 \) vertices.
- Check \(P_B \) and \(Q \) have the same 0/1 vertices. “Just combinatorics”, using Grassmann necklaces.
Positroid polytopes

\[\mathcal{B} = \{12, 13, 14, 23, 24\} \]

A key result:

Theorem. (Gelfand-Serganova ’87)
\(\mathcal{B} \) is a matroid \(\iff \) all edges of \(P_\mathcal{B} \) have the form \(e_i - e_j \).

Theorem. (Lam-Postnikov, A.-Reiner-Williams ’13)
\(\mathcal{B} \) is a positroid \(\iff \) additionally, all facets of \(P_\mathcal{B} \) have the form \(\sum_{i \in S} x_i \leq a_S \) with \(S \) a cyclic interval.

Sketch of \(\implies \).
- Define \(Q \) by all ineqs \(\sum_{i \in S} x_i \leq a_S \) (\(S \) cyclic interval) sat. by \(P_\mathcal{B} \).
- Matrix of \(Q \) is totally unimodular \(\Rightarrow \mathbb{Z}^n \) vertices \(\Rightarrow \) 0/1 vertices
- Check \(P_\mathcal{B} \) and \(Q \) have the same 0/1 vertices. “Just combinatorics”, using Grassmann necklaces.
3. Connectivity for matroids

A matroid M is **disconnected** if it can be written as

$$M = M_1 \oplus M_2 := \{ B_1 \sqcup B_2 \mid B_1 \in M_1 \text{ and } B_2 \in M_2 \}.$$

Any matroid M can be written uniquely as

$$M = M_1 \oplus \cdots \oplus M_k$$

with all the M_i connected (called its **connected components**).

Fact. M is connected $\iff P_M$ is (almost) full-dimensional.

Conjecture. Almost every matroid is connected.

Theorem. At least $1/2$ of matroids are connected.
Enumerating connected matroids

Let

\[m(n) = \# \text{ matroids on } [n], \quad m_{\text{conn}}(n) = \# \text{ connected matroids on } [n]. \]

\[M(x) = \sum_{n \geq 0} m(n) \frac{x^n}{n!}, \quad M_{\text{conn}}(x) = \sum_{n \geq 0} m_{\text{conn}}(n) \frac{x^n}{n!}. \]

Then if \(\Pi_n \) is the collection of set partitions of \([n]\),

\[m(n) = \sum_{\{S_1, \ldots, S_k\} \in \Pi_n} m_{\text{conn}}(|S_1|) \cdots m_{\text{conn}}(|S_k|) \]

and the Exponential Formula gives

\[M(x) = e^{M_{\text{conn}}(x)}. \]

This is nice, but gives no useful bounds for \(m_{\text{conn}}(n)/m(n) \).
Connectivity for positroids.

For positroids, connected components look quite different.

Theorem. (A. - Rincón - Williams, Ford ’13) The connected components of a positroid are the “connected components” of its decorated permutation. They form a non-crossing partition of $[n]$.

![Diagram](image_url)
Enumerating connected positroids

\[p(n) = \# \text{ positroids on } [n], \quad \text{\(p_{\text{conn}}(n) = \# \) connected positroids on } [n]. \]

\[P(x) = \sum_{n \geq 0} p(n)x^n, \quad P_{\text{conn}}(x) = \sum_{n \geq 0} p_{\text{conn}}(n)x^n \]

Then if \(NC_n \) is the set of non-crossing partitions of \([n]\),

\[p(n) = \sum_{\{S_1, \ldots, S_k\} \in NC_n} p_{\text{conn}}(|S_1|) \cdots p_{\text{conn}}(|S_k|) \]

We get

\[xP(x) = \left(\frac{x}{P_{\text{conn}}(x)} \right)^{-1} \quad \text{(Beissinger '85, Speicher '94).} \]

This brings us to free probability.
Detour: Free Probability

A non-commutative probability theory. *(Voiculescu ’92)*

(Operator algebras, random matrix theory, representation theory, ...)

<table>
<thead>
<tr>
<th>(Normal) probability</th>
<th>Free probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>independence</td>
<td>freeness</td>
</tr>
<tr>
<td>moments: $E(e^{tX}) = \sum_{n \geq 0} m_n(X) \frac{t^n}{n!}$</td>
<td>moments: $E(e^{tX}) = \sum_{n \geq 0} m_n(X) \frac{t^n}{n!}$</td>
</tr>
<tr>
<td>cumulants: $m_n = \sum_{{S_1, \ldots, S_k} \in \Pi_n} c_{</td>
<td>S_1</td>
</tr>
<tr>
<td>X, Y independent \Rightarrow $c_n(X + Y) = c_n(X) + c_n(Y)$</td>
<td>X, Y free \Rightarrow $k_n(X + Y) = k_n(X) + k_n(Y)$</td>
</tr>
</tbody>
</table>

Theorem: *(A. - Rincón - Williams ’13)* For $Y \sim 1 + \text{Exp}(1)$,
- moments $m_n(Y) = \#$ positroids on $[n]$
- free cumulants $k_n(Y) = \#$ connected positroids on $[n]$
Detour: Free Probability

A non-commutative probability theory. (Voiculescu ’92)
(Operator algebras, random matrix theory, representation theory,...)

<table>
<thead>
<tr>
<th>(Normal) probability</th>
<th>Free probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>independence</td>
<td>freeness</td>
</tr>
<tr>
<td>moments: $E(e^{tX}) = \sum_{n \geq 0} m_n(X) \frac{t^n}{n!}$</td>
<td>moments: $E(e^{tX}) = \sum_{n \geq 0} m_n(X) \frac{t^n}{n!}$</td>
</tr>
<tr>
<td>cumulants: $m_n = \sum_{{S_1, \ldots, S_k} \in \Pi_n} c_{</td>
<td>S_1</td>
</tr>
<tr>
<td>X, Y independent \Rightarrow $c_n(X + Y) = c_n(X) + c_n(Y)$</td>
<td>X, Y free \Rightarrow $k_n(X + Y) = k_n(X) + k_n(Y)$</td>
</tr>
</tbody>
</table>

Theorem: (A. - Rincón - Williams ’13) For $Y \sim 1 + \text{Exp}(1)$,
- moments $m_n(Y) = \#$ positroids on $[n]$
- free cumulants $k_n(Y) = \#$ connected positroids on $[n]$
Enumerating positroids

\(p(n) = \# \) positroids on \([n]\), \(p_{\text{conn}}(n) = \# \) connected positroids on \([n]\).

No bound for \(p_{\text{conn}}(n)/p(n) \) from \(xP(x) = \left(\frac{x}{P_{\text{conn}}(x)} \right)^\langle -1 \rangle \) (∗).

Theorem. (A. - Rincón - Williams ’13, Postnikov ’06)

\[
p(n) = n! \cdot \left(1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!} \right) \sim n! \cdot e.
\]

Proof. Not hard, just count “decorated permutations”.

Now we can hope:

(∗) → Sage → OEIS + veladora → \(p_{\text{conn}}(n) = \) something good
Enumerating connected positroids

\[p(n) = \# \text{ positroids on } [n], \quad p_{\text{conn}}(n) = \# \text{ connected positroids on } [n]. \]

\[(*) \rightarrow \text{Sage} \rightarrow \text{OEIS } + \text{ veladora} \rightarrow \text{A075834} \]

Theorem. (A. - Rincón - Williams ’13)

\[p_{\text{conn}}(n) = \# \text{ of permutations on } [n] \text{ with no fixed intervals} \]

(Callan ’04, Salvatore-Tauraso ’09)

\[\sim \# \text{ of permutations on } [n] \text{ with no fixed points} \sim \frac{n!}{e}. \]

Proof. Not so easy, requires more subtle estimates.
Enumerating positroids vs. connected positroids

Since $p(n) \sim n! \cdot e$ and $p_{conn}(n) \sim n!/e$, we get:

Theorem. (A.-Rincón-Williams ’13) A positroid is connected with probability

$$1/e^2 = 0.1353\ldots$$

Compare with

Conjecture (Mayhew-Newman-Welsh-Whittle ’11) Almost every matroid is connected. (**Theorem.** At least $1/2$ of them are.)

This is not evidence against MNWW’s conjecture.

It is evidence that positroids and matroids are very different.
4. Realizability for matroids

BIG Question. Which matroids are realizable by a matrix?

Conjecture. *(Brylawski-Kelly ’80)* Almost no matroid is realizable.

(“Exercise”. The proof didn’t fit in the margin.)

Good news:

Theorem *(Geelan-Gerards-Whittle ’16)* Rota’s Conjecture, ’71
Over \mathbb{F}_q, finitely many obstructions to being realizable. (Any q.)

Bad news:

Theorem *(Vámos ’78, Mayhew-Newman-Whittle ’12, ’14)*
“The missing axiom of matroid theory is lost forever”.
Over infinite fields, the realizability question is very difficult.
4. Realizability for oriented matroids

An **oriented matroid** is a matroid where bases have signs, and if Sac and Sbd have the same sign, then

- Sab and Scd have the same sign, or
- Sad and Sbc have the same sign.

Here $\text{sign}(\ldots x \ldots y \ldots) = - \text{sign}(\ldots y \ldots x \ldots)$.

Motivating example. A **real** matrix $A \in \mathbb{R}^{m \times n}$ gives an oriented matroid, where a basis I is given the sign of the minor $\Delta_I(A)$.

\[
\Delta_{Sac}\Delta_{Sbd} = \Delta_{Sab}\Delta_{Scd} + \Delta_{Sad}\Delta_{Sbc}. \quad \text{(Plücker)}
\]

BIG Question. Which matroids are realizable by a matrix?

(Probably) **very difficult:**

Theorem (Sturmfels ’87) The following are **equivalent**:

- There’s an algorithm to determine if any oriented matroid is realizable over \mathbb{Q}.
- There’s an alg. to decide solvability of any system of Diophantine eqs over \mathbb{Q}.
- There’s an algorithm to decide if any lattice is the face lattice of a \mathbb{Q}-polytope.
A **positively oriented matroid** is an oriented matroid whose bases are all positive. *(da Silva - Las Vergnas ’87)*

Goal: generalize combinatorics of **cyclic polytope**. Da Silva did find several elegant combinatorial properties.

Conjecture. *(da Silva, 1987)*

Every positively oriented matroid is realizable.

- Are there any antecedent results for realizability of OMs?
- Remember, we believe almost no matroid is realizable. This conjecture seems rather optimistic.
Realizability of positively oriented matroids

A **positively oriented matroid** is an oriented matroid whose bases are all positive. (da Silva - Las Vergnas ’87)

Theorem. (A. -Rincón -Williams 13) (da Silva’s Conjecture)
Every positively oriented matroid is realizable over \(\mathbb{Q} \).

Idea of the proof. Use matroid polytopes!

\[
M \text{ is a positroid} \iff \text{facet dirs. of } P_M \text{ are cyclic intervals.}
\]

\[
M \text{ is positively oriented} \iff \text{facet dirs. of } P_M \text{ are cyclic intervals.}
\]

⇒: If \(P_M \) has a facet which is **not** a cyclic interval, play with the chirotope to contradict the combinatorial Plücker relations.
- First do it for full-dim polytopes (connected positroids)
- Then do it in general, via the non-crossing partition structure.
If χ and χ' are oriented matroids, we say χ specializes to χ' if

$$\chi(I) \neq \chi'(I) \implies \chi'(I) = 0.$$

The **MacPhersonian** (or combinatorial Grassmannian) $\text{MacP}(m, n)$ is the poset of rank m OMs on $[n]$ ordered by (reverse) specialization.

- For $m \in \{1, 2, n - 2, n - 1\}$, $\text{MacP}(m, n)$ and $\text{Gr}_\mathbb{R}(m, n)$ are homotopy equivalent. (MacPherson ’93, Babson ’93).
- Some info on \mathbb{Z}_2-cohomology and homotopy groups. (Anderson-Davis ’02)
- “Otherwise, the topology of $\text{MacP}(m, n)$ is a mystery”.

Open question: Is $\text{MacP}(m, n)$ homotopy equivalent to $\text{Gr}_\mathbb{R}(m, n)$?
The **positive MacPhersonian** $\text{MacP}^+(m, n)$ is the poset of rank m positively oriented matroids on $[n]$ ordered by (reverse) specialization.

The **positive Grassmannian** $\text{Gr}^+(m, n)$ is the subset of $\text{Gr}(m, n)$ where all Plücker coordinates are nonnegative.

The **positroid stratification** of $\text{Gr}^+(m, n)$ makes it a CW complex. (Postnikov-Speyer-Williams ’09). Is it regular?

Theorem. (A.-Rincón-Williams 2013) $\text{MacP}^+(m, n)$ is **homeomorphic to a ball**, and thus homotopy equiv. to $\text{Gr}^+(m, n)$ [Rietsch-Williams ’10].
many thanks

The papers and slides are at:
http://math.sfsu.edu/federico

1. Positroids and non-crossing partitions.
 http://arxiv.org/abs/...
 Trans. Amer. Math Soc., to appear

2. Positively oriented matroids are representable.
 http://arxiv.org/abs/...
 J. European Math. Soc., to appear