Lemma: \[S(\alpha_n) = (-1)^n \alpha_n \] (A much nicer formula!)

Pf: Need \(S \times I = \alpha I = I \times \alpha \). Enough: check \(\alpha = \alpha_n \).

We need \(\sum \epsilon^{(i)} h_r \epsilon_{n-k} = \{0 \text{ if } n \leq 0 \} \) (Exercise) \(\blacksquare \)

Corollary: If \(\lambda \vdash n \), then \(S(h_n) = (-1)^n \alpha_n \)

Pf: \(S^2 = I \) hence. \(\blacksquare \)

Corollary: \(\{ h_n : \lambda \vdash n \} \) is a basis for \(\text{Sym}_n \)

Pf: Spanning: Let \(f \in \text{Sym}_n \)

\[\Rightarrow S(f) = \sum_{\lambda \vdash n} \alpha_{\lambda} \epsilon_\lambda \] (\(\epsilon \) basis)

\[\Rightarrow f = (-1)^n \sum_{\lambda \vdash n} \alpha_{\lambda} h_\lambda \]

Lin indep: If \(\sum_{\lambda \vdash n} \alpha_{\lambda} h_\lambda = 0 \) then \(\sum_{\lambda \vdash n} \alpha_{\lambda} \epsilon_\lambda = 0 \) applying \(S \) \(\blacksquare \)

Corollary: \(\text{Sym}_n = \text{IK}[h_1, h_2, \ldots] \)
Prop
\[\Delta(h_n) = \sum_{k=0}^{n} h_k \otimes h_{n-k} \]

Pf
\[\Delta(e_n) = \sum_{k=0}^{n} e_k \otimes e_{n-k} \]
\[(-1)^n \Delta(h_n) = \Delta(S(e_n)) \]
\[= \sum_{k=0}^{n} S(e_{n-k}) \otimes S(e_k) \]
\[= \sum_{k=0}^{n} h_{n-k} \otimes h_k. \]

Corollary
The map \(e_\lambda \mapsto h_\lambda \) is an automorphism of Sym.

In fact we can say more.
There is a natural inner product on Sym,
\[\langle e_\lambda, h_\mu \rangle = \begin{cases} 1 & \lambda = \mu \\ 0 & \lambda \neq \mu \end{cases} \]
which allows us to identify Sym* with Sym, regarding \(h_\mu \) as a linear functional on Sym.

Thm Sym is a self-dual Hopf algebra.

Graded Dual
If \(H = \bigoplus_{n \geq 0} H_n \) is a graded Hopf algebra and \(\text{dim}(H_n) \) is finite for all \(n \), let
\[H^* = \bigoplus_{n \geq 0} H_n^* \]
be the \underline{graded dual} of \(H \). It is a Hopf algebra as defined earlier on in the class.

The inner product on Sym then defines a dual Hopf algebra structure on Sym. But in fact, this precisely sends \(e_\lambda \mapsto h_\lambda \).

Proof
Unravelling defn, this is \(\langle \Delta f, g \otimes h \rangle = \langle f, gh \rangle \)

Enough to show for \(1 \}\\text{st}: f = M_\lambda, g = h_\mu, h = h_\nu \)
\[\langle \Delta M_\lambda, h_\mu \otimes h_\nu \rangle = \langle M_\lambda, h_\mu h_\nu \rangle = \text{coeff of } M_\lambda \otimes M_\mu \text{ in } \Delta(h_\nu) \]
\[= \begin{cases} 1 & \lambda + \mu = \nu \\ 0 & \text{otherwise} \end{cases} \]