Matroids

Matroid is a combinatorial model of independence.

A matroid \(M = (E, \mathcal{I}) \) is a set \(E \) with a collection \(\mathcal{I} \) of subsets of \(E \), called "independent sets," such that

- \(\emptyset \in \mathcal{I} \)
- If \(I \subseteq J \) and \(J \in \mathcal{I} \) then \(I \in \mathcal{I} \)
- If \(I, J \in \mathcal{I} \) and \(|I| < |J| \) then there exists \(i \in J - I \) such that \(I \cup \{i\} \in \mathcal{I} \).

A basis is a maximal independent set.
The collection \(\mathcal{B} \) of bases determine \(M \).

Ex 1.
\[E = \{a, b, c, d, e, f\} \]
\[\mathcal{I} = \{\emptyset, a, b, c, d, e, ab, ac, ad, ae, bc, bd, be, cd, ca, \]
\[ab, ac, bd, b, ce, acd, ace \} \]
\[\mathcal{B} = \{abc, abd, ace, acd, ace \} \]

Ex 2 (Linear matroids)
\(E \) = set of vectors in a vector space
\(\mathcal{I} \) = linearly independent subsets.

Ex 3 (Graphical matroids)
\(E \) = edges of a graph
\(\mathcal{I} \) = subsets of \(E \) with no cycles.

Ex 4 (Algebraic matroids)
\(E \) = elements of a field extension over \(\mathbb{F} \)
\(\mathcal{I} \) = subsets of \(E \) algebraically independent over \(\mathbb{F} \).

- If \(\mathbb{F} = \mathbb{F}(x, y, z) \)
- \(a = x + y + z \)
- \(b = x + y \)
- \(c = x - y \)
- \(d = xy \)
- \(e = x^2y^2 \)
- \(f = 1 \)

Many other examples!
If $M = (E, B)$, $M' = (E', B')$ are matroids, then the direct sum $M \oplus M'$ has
- ground set $E \cup E'$
- bases: $\{ B \cup B' : B \subseteq B, B' \subseteq B' \}$

Fact: $M \oplus M'$ is a matroid.

Prop. The product $M \cdot M' = M \otimes M'$ and coproduct
\[\Delta(M) = \sum_{A \subseteq E} (M/A) \otimes (M/A) \]
give a Hopf algebra of matroids.

For graphical matroids, this is essentially the same as the (second) Hopf algebra of graphs.

If $A = \{ a_1, \ldots, a_k \}$ then
- $M/A = M/a_1/a_2/\ldots/a_k$
- $M \setminus A = M \setminus (E - A)$