Ex 5. (Incidence Hopf alg. of lattices)

A lattice is a poset L such that:

- any two elements $a, b \in L$ have a join $a \lor b$ and a meet $a \land b$

such that:

- $a \lor b \geq a$
- $a \lor b \geq b$
- $a \land b \leq a$
- $a \land b \leq b$

If $c \leq a, c \leq b$ then $c \leq a \lor b$
If $d \leq a, d \leq b$ then $d \leq a \land b$

Least upper bound \uparrow

Greatest lower bound \downarrow

Examples:

No: $0 \lor c$

Yes: \bigcirc

$b \lor c$?

Other examples:

- $(2^5, \leq) \quad A \lor B = A \lor B, \quad A \land B = A \land B$
- $(\mathbb{N}, \text{divisibility}) \quad a \lor b = \gcd(a, b), \quad a \land b = \text{lcm}(a, b)$
- (Subgroup of $\mathbb{G}, \leq) \quad H \lor H' = H \land H', \quad H \lor H' = \langle H, H' \rangle$

Ex 6. (Another Hopf algebra of posets)

A lattice L is distributive if \land and \lor are:

\[
\begin{align*}
\land & (a \land (b \lor c)) = (a \land b) \lor (a \land c) \\
\lor & (a \lor (b \land c)) = (a \lor b) \land (a \lor c)
\end{align*}
\]

Easy facts/exercises

- Either property implies the other one
- Distributive lattices are closed under taking subintervals, products.

\Rightarrow There is an incidence Hopf alg. of distributive.
Why is the incidence Hopf alg of distributive lattice nice to have? Because distributive lattices have a lot of structure:

Let P be a poset and $J(P) = \{ \text{downsets of } P \}$ such that $Q \subseteq P$ such that $x \leq y, x \in Q \Rightarrow y \in Q$.

Then $(J(P), \subseteq)$ is distributive $A \vee B = A \cup B, \quad A \wedge B = A \cap B$

Ex: $P = \{1, 2, 3, 4, 5\}$

$J(P) = \{1, 2, 3, 4, 5\}$

Fundamental Theorem for Finite Distributive Lattices

Let L be a finite distributive lattice. There is a unique (up to isomorphism) poset P such that $L \cong J(P)$

(Birkhoff, 1947)

Sketch of Proof:

Existence:

Say $p \in L$ is join-irreducible if there are no $a, b \in L$ such that $a \wedge b = p$.

Let P be the join-irreducible elements of L.

Let P inherit the partial order from L.

Claim: $L \cong J(P)$

Map: $\phi: L \rightarrow J(P)$

$t \mapsto f(t) = \{ s \in P : s \leq t \}$

$L \leftarrow J(P) : \phi^{-1}$

$V_i \leftarrow I$

(Check details.)

Uniqueness:

Claim: The poset of join-irreducibles of $J(P)$ is isomorphic to P.

ϕ: There is a bijection $\{ \text{downsets of } J(P) \} \rightarrow D_{\text{max}} = \{ \text{maximal chains} \}$

ϕ^{-1}: There is a bijection $D_{\text{max}} = \{ \text{maximal chains} \} \rightarrow \{ \text{maximal downsets} \}$

$P_{\text{max}} = \{ p : p \text{ is a join-irreducible} \}$

So the join-irreducibles of $J(P)$ are those D_{max}.

Then $J(P) \cong J(Q) \Rightarrow P \cong Q$.
So basis elt of $H(G)$ are

\equiv classes of distributive lattices L

\equiv classes of posets P

Product: $L_1 \circ L_2 = L_1 \times L_2$

\Rightarrow

$P_1 \circ P_2 = P_1 \cup P_2$

$L_1 = J(R), L_2 = J(R_2)$

Coproduct: $\triangle (L) = \sum_{x \in L} [\hat{0}, x] \otimes [x, \hat{1}]$

\Rightarrow

$\triangle (P) = \sum_{D \text{ daunted}} D \otimes (P \downarrow D)$

$L \equiv J(P)$

$[\hat{0}, x] \equiv J(D)$

$[x, \hat{1}] \equiv J(P \downarrow D)$

Antipode: $S(L) = \sum (-1)^n [x_0, x_1] \times \cdots \times [x_{n-1}, x_n]$

$\hat{0} = x_0 < x_1 < \cdots < x_n = \hat{1}$

\Rightarrow

$S(P) = \sum (-1)^n [f^{-1}(1) \cup \cdots \cup f^{-1}(n)]$

$f: P \rightarrow [n]$

surjective, order preserving

$\left(\begin{array}{c}
\{x_3 \text{ in } J(P)\} \\
\{D_3 \text{ daunted in } P\} \\
\therefore P \rightarrow [3] \\
f(P \backslash D_3) = \hat{0}
\end{array}\right)$