4. A Non-Commutative, Non-Cocommutative Bialgebra: Let \(q \in \mathbb{F} \) be non-zero. Consider the \(\mathbb{F} \)-algebra \(H_4 \) generated by indeterminates \(g \) and \(x \) subject to the relations \(g^2 = 1, x^2 = 0 \), and \(xg = -gx \).

(a) Show that \(1, g, x, gx \) form a basis for \(H_4 \).

Proof. We begin by showing that \(H_4 \in \text{span}\{1, g, x, gx\} \). Note that \(\text{span}\{gx\} = \text{span}\{xg\} \) because in an algebra we can freely scale by elements of the field, for example -1. Thus we can switch between \(xg \) and \(gx \) without altering the span of the set. This allows us to transform any expression composed of \(x \) and \(g \) into the form \(g^i x^j \). Note that with the relations \(x^2 = 0 \) and \(g^2 = 1 \), we have \(x^j = 0 \) for any \(j > 1 \), and \(g^i = g \) only for odd \(i \), 1 otherwise. Thus the only possible unique (relative to the field) terms we can build from \(x \) and \(g \) are \(1, g, x, \) and \(gx \). Thus \(H_4 \in \text{span}\{1, g, x, gx\} \).

To show linear dependence in these terms, assume we have some relation \(\lambda_1 1 + \lambda_2 g + \lambda_3 x + \lambda_4 gx = 0 \) where not all \(\lambda \) equal zero. If this were the case, such a relation would have to be given in the construction of the algebra. Since no such relation is given, we must have all \(\lambda = 0 \), which establishes linear independence. Thus, \(1, g, x, gx \) form a basis for \(H_4 \). \(\square \)

(b) Express the product \((a + bg + cx + dgx)(a' + b'g + c'x + d'gx) \) in terms of this basis, where \(a, b, c, d, a', b', c', d' \in \mathbb{F} \).

Proof.

\[
(a + bg + cx + dgx)(a' + b'g + c'x + d'gx) = a a' + a b' g + a c' x + a d' g x + b a' g + b b' g^2 + b c' g x + b d' g^2 x + ... \\
+ c a' x + c b' x g + c c' x^2 + c d' x g x + d a' g x + d b' g x g + d c' g x^2 + d d' g x g x \\
= a a' + a b' g + a c' x + a d' g x + b a' g + b b' g + b c' g x + b d' x + ... \\
+ c a' x - c b' g x + 0 + 0 + d a' g x - d b' x + 0 + 0 \\
= (a a' + b b') + (a b' + b a') g + (a c' + b d' + c a' - d b') x + (a d' + b c' - c b' + d a') g x
\]

\(\square \)