Another important source of such formulas:

Let

\[0 \rightarrow V_n \xrightarrow{\partial_n} V_{n-1} \xrightarrow{\partial_{n-1}} \ldots \xrightarrow{\partial_2} V_0 \xrightarrow{\partial_1} W \rightarrow 0 \]

be an exact sequence of fin-dim vector spaces, that is, \(\text{im} \partial_i = \ker \partial_{i+1} \). Then

\[\dim W = \sum_{i=0}^{n} (-1)^i \dim V_i \]

Proof: Induction on \(n \).

More generally, consider the "binomial determinant"

\[\det \left(\begin{array}{c} a_i \\ b_j \end{array} \right)_{1 \leq i, j \leq n} \]

for \(0 \leq a_1 < \ldots < a_n \) integers
\(0 \leq b_1 < \ldots < b_n \)

These determinants appeared in algebraic geometry (Habous - Classes de Chern d'un produit tensoriel)

Geisel-Viennot: why are they positive?

Lindstrom-Geisel-Viennot Lemma: (Korlin - McGregor)

Let \(G \) be a directed graph with no directed cycles.

Let \(s_1, \ldots, s_n \) be "sources"
\(t_1, \ldots, t_m \) be "sinks."

Assume all ratings (in vertex-disjoint paths) from \(\{s_1, \ldots, s_n\} = S \)

to \(\{t_1, \ldots, t_m\} = T \) connect \(s_i \) to \(t_j \). \(s_i \) \(t_j \). Then

\[\det \left(a_{ij} \right)_{1 \leq i, j \leq n} = \# \text{ of ratings from } S \rightarrow T. \]

- There is a version allowing cycles
- There is a version with edge weights: \(a_{ij} = \sum_{P \text{ path } i \rightarrow j} w(P) \)
- \(\det(a_{ij}) = \sum_{P \text{ paths}} w(P) \)
- If other points are possible, \(\det(a_{ij}) = \sum_{P \text{ paths}} \sigma_{ij}(P) w(P) \)