Note: If \(G_1 = (V_1, E_1), G_2 = (V_2, E_2) \) then \(G_1 \times G_2 \) is the graph on \(V_1 \cdot V_2 \) with edge:

\[
(a_1, b_1) \in E_1 \Rightarrow (a_1, b_2) \in E_1 \times G_2
\]

\[
(a_2, b_2) \in E_2 \Rightarrow (a_1, b_2) \in G_1 \times E_2
\]

Note: \(G_n = (\cdot)^n \)

Prop. If \(L(G_1) \) has eigenvalues \(\lambda_1, \ldots, \lambda_a \)

\(L(G_2) \) has eigenvalues \(\mu_1, \ldots, \mu_b \)

then \(L(G_1 \times G_2) \) has eigenvalues \(\lambda_i + \mu_j \) \(1 \leq i \leq a \)

\(1 \leq j \leq b \)

Pf. Take eigenvectors \(\mathbf{r} \) of \(L(G_1) \) with eigenval \(\lambda \)

\(\mathbf{s} \) of \(L(G_2) \) with eigenval \(\mu \)

Let \(\mathbf{t} = (\mathbf{r}_i \cdot \mathbf{s}_j) \) \(1 \leq i \leq a \)

\(1 \leq j \leq b \)

\[\mathbf{L}(\mathbf{L}) \mathbf{r} = \lambda \mathbf{r} \]

\[\mathbf{L}(\mathbf{L}) \mathbf{s} = \mu \mathbf{s} \]

The entry \((i, j) \) of \(L(G_1 \times G_2) \mathbf{t} \) is:

\[
(\deg v_i + \deg w_j) r_i s_j - \sum_j r_j s_j = \lambda_i r_i s_j
\]

\[
: = (\deg v_i, \text{deg } w_j)
\]

The characteristic polynomial of the Laplacian is:

\[
\det (\mathbf{L} - \lambda \mathbf{I}) = (\lambda - \lambda_1) \cdots (\lambda - \lambda_a)
\]

The root of \(-\lambda \) is the sum of the roots of the

\(n \)th order polynomial, which are equal

\(\lambda, \ldots, \lambda_n \)
Matrix-tree Theorem (directed version)

Let \(D \) be a directed graph on \([n] \). ("digraph")

The Laplacian of \(D \) is

\[
L_{ij} = \begin{cases}
-(\# \text{ edges } i \rightarrow j) & i \neq j \\
\text{outdegree}(i) - (\# \text{ loops at } i) & i = j
\end{cases}
\]

A directed spanning tree rooted at \(v \) is one

where all edges point toward \(v \).

\[
\text{(# directed spanning tree}) = \det (\text{adj} \text{ppal} \text{graph}) \\
\text{rooted at } v \\
= \frac{1}{n} \lambda_1 \cdots \lambda_{n-1}
\]

Corollary: This is independent of \(v \! \).
With a bit of advanced planning to make sure we cover the whole graph, we get a stronger result.

Theorem: Let D be an Eulerian graph on $|V|$.
Consider an edge $e = v \rightarrow w$.

- $E(D,v) = \#$ oriented spanning trees of D rooted at v.
- $E(D,e) = \#$ Eulerian walks of D
 starting at e.

Then

$$E(D,e) = E(D,v) \frac{(\text{outdeg}(v) - 1)!}{\text{indeg}(v)!}$$

Proof:
Let T be one such tree.
Each vertex i has a unique edge on T
pointing towards v. Linearly order the other
outdeg(i)-1 arbitrarily.
(For $i=v$, order the outedges $\neq e$).

We claim this gives an Eulerian walk E by:

- Start with e
- Every time you enter a vertex i, leave using the lowest unused out-edge.
 (If none available, use the out-edge in T).

Ex:

$$E = E_D = \frac{5!}{2!} \div 2$$

of Eulerian walks = $n^{n-2} \cdot [(n-2)!]^n$