Since \(\prod_{n=1}^{\infty} \frac{1}{1-x^n} = \sum_{n=0}^{\infty} p(n)x^n \)

\(\prod_{n=1}^{\infty} (1-x^n) = 1-x-x^2+x^5+x^3-x^{12}-x^{15}+... \)

When we multiply these and compute coefficients of \(x^n \) we get

\(0 = p(n) - p(n-1) - p(n-3) + p(n-4) - p(n-11) + ... \)

This recurrence is the best way to compute \(p(n) \), but there are other ways of computing \(p(n) \) only. Also, \(p(n) \sim \frac{n^{1/2}}{4\sqrt{3}} n \)

(Compare with \(n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n} \))

Prop: The \# of self-conjugate partitions of \(n \) equals the \# of partitions of \(n \) into odd parts.

PE

\[\begin{array}{c}
6 + 6 + 5 + 3 + 3 + 2 & \rightarrow & 11 + 9 + 5
\end{array} \]

Now that we've played enough with formal power series to know what we might need to worry about, let's discuss why we don't need to worry.

Let \(R = \text{com. ring}, \ (\text{for us usually } R = \mathbb{R} \ or \ \mathbb{C}) \)

A formal power series is a sequence \((a_0, a_1, a_2, ...) \) which we write \(\sum a_k x^k \) \((a_i \in R)\)

Write \(a_n = [x^n] A(x) \)

The ring of formal power series \(R[[x]] \) has operations:

\[\begin{align*}
+ & : (a_n)_{n \in \mathbb{N}} + (b_n)_{n \in \mathbb{N}} = (a_n + b_n)_{n \in \mathbb{N}} \\
\cdot & : (a_n)_{n \in \mathbb{N}} \cdot (b_n)_{n \in \mathbb{N}} = (a_0 b_0 + a_1 b_{-1} + ... + a_n b_{-n})_{n \in \mathbb{N}} \\
\end{align*} \]

(consistent with our power series notation)

We have \(0 = (0,0,...) \), \(1 = (1,0,0,...) \)

Basic: assoc. of \(+ \), of \(\cdot \)

comm. of \(+ \), of \(\cdot \)

dist. of \(+ \), of \(\cdot \)

See: EC1, Sec 1.1
Ian Niven, "Formal Power Series" (Amer Math Monthly)
There is a distinction between formal and analytic power series, but:

Principle: Any identity of power series which holds analytically for small enough l, makes sense for formal power series, also holds in the ring of formal power series.

This is clearer through some examples:

Ex. 1. $\sum_{n=0} r^n x^n = \frac{1}{1-rx}$

Here this means $(\sum_{n=0} r^n x^n)(1-rx) = 1$, or a formal power series. But

$$[x^n] \text{ LHS} = \begin{cases} r^n + r^{n+1}(-r) = 0 & n \geq 1 \\ 1 & n = 0 \end{cases} \checkmark$$

Ex. 2. $\sum_{n=0} x^n / n! \sum_{n=0} (-x)^n / n! = 1$

This makes sense in $\mathbb{R}[[x]]$; i.e.

$$\sum_{n=0} \frac{1}{k!} (-1)^k = \begin{cases} 0 & n \geq 1 \\ 1 & n = 0 \end{cases}$$

This follows from $(1+1)^n = \begin{cases} 1 & n = 0 \\ 0 & n \geq 1 \end{cases}$

An. We can also invoke analysis; this says $e^x e^{-x} = 1$

which is true for all $x \in \mathbb{C}$. Then just use:

Thus: if two power series represent the same function in a neighborhood of 0, then their coefficients are equal.

Ex 3. A non-example

The analytic identity $e^x + e^{-x}$ does not give an identity in $\mathbb{R}[[x]]$, because

$$\sum_{n=0} (x+1)^n/n!$$

is not a formal power series.

The series of x^n has infinitely many contributions.

To make sense of (some) infinite sums, we need to define convergence in $\mathbb{R}[[x]]$.

Say $F_1(x), F_2(x), \ldots \rightarrow F(x)$

if for any n, there exists N such that

$$[x^n] F_n(x) = [x^n] F_{n+1}(x) = \cdots = [x^n] F(x).$$

Let $\deg F(x) = \min n$ s.t. $[x^n] F(x) \neq 0$

Prop. $\sum_{j=0}^\infty A_j(x)$ converges $\iff \lim_{j \to \infty} \deg A_j(x) = \infty$.

So: $\sum_{n=0} \frac{(x+1)^n}{n!}$ does not, $\sum_{n=0} \frac{[x^n] F(x)}{n!}$ does.
So: If \(F(x), G(x) \in R[[x]] \), we can define

\[
F(G(x)) = \sum_{n=0}^{\infty} f_n \left(\sum_{m=0}^{\infty} g_m x^m \right)^n \quad \text{iff} \quad g_0 = G(0) = 0.
\]

Prop: \(\prod_{j=0}^{\infty} (1 + A_j(x)) \) converges \(\iff \) \(\lim_{n \to \infty} \deg A_j(x) = 0 \)
\(\iff \) \(A_j(0) = 0 \)

Ex. 4 We showed

\[
\sum_{n=0}^{\infty} P_{\leq k}(n)x^n = \prod_{n=0}^{\infty} \frac{1}{1-x^n}
\]

And concluded

\[
\sum_{n=0}^{\infty} P(n)x^n = \prod_{n=0}^{\infty} \frac{1}{1-x^n} = \prod_{n=0}^{\infty} (1+x^n+x^{2n}+\ldots)
\]

The RHS is defined and what we are doing is taking the limit of (1) as \(k \to \infty \); the terms stabilize to that of (2).

Prop: \(R[[x]] \) is an integral domain
if \(R \) is an integral domain

PF: If \(A(x)B(x) = 0 \) when \(A(x) = \sum_{n=0}^{\infty} a_n x^n \)
\(B(x) = \sum_{n=0}^{\infty} b_n x^n \)

Then \(A(x)B(x) = \sum_{n=0}^{\infty} a_n b_n x^n + \ldots \)

Ex. 5 The Catalan GF satisfies
\[
(1-2x+C(x))^2 = 1-4x
\]
Now:
\[
(1+x)^r = \sum_{n=0}^{\infty} \binom{r}{n} x^n
\]

satisfies
\[
(1-4x)^{1/2} = 1-4x
\]

since it satisfies \(f_0 = 0 \) for \(\|x\| < 1/4 \). Then
\[
[-2xC(x)]^2 = [(1-4x)^{1/2}]^2
\]

Now, \(A = B \Rightarrow (A-B)(A+B) = 0 \Rightarrow A = \pm B \).

Since they both have \([Ex.1, \ldots, 1-2xC(x) = (1-4x)^{1/2} \]

"Calculus": Define \(\left(\sum_{n=0}^{\infty} f_n x^n \right)' = \sum_{n=0}^{\infty} (n+1)f_{n+1} x^n \)

We have

\[
(FG)' = F'G + FG' \quad (F(0))' = F'G(x)G(x) \quad (G(0) = 0)
\]

So, e.g. if \(G'(x) = F'(x)/F(x) \quad G(0) = 0 \quad F(0) = 1 \)
\(G'(x) = \frac{\log F(x)}{x} \quad G(x) = \log F(x) \rightarrow F(x) = e^{G(x)} \)