we see that for \(m \) 0’s we have \(m + 1 \) places to put our runs. As we can only place one run in a space the number of ways to do this is \(\binom{m+1}{k} \) and so the combined result is
\[
\binom{n-1}{k-1} \binom{m+1}{k}.
\]

(3) (Sequences of subsets)

(a) Let \(k, n \geq 1 \) be given. Find the number of sequences \(S_0, S_1, \ldots, S_k \) of subsets of \([n]\) such that for any \(1 \leq n \leq k \) we have either:
\[
S_i \supseteq S_{i-1} \quad \text{and} \quad |S_i - S_{i-1}| = 1,
\]
or
\[
S_i \subseteq S_{i-1} \quad \text{and} \quad |S_{i-1} - S_i| = 1.
\]
First, as there are \(2^n \) possible subsets there are \(2^n \) possibilities for the set \(S_0 \). Now, with every transition from a subset \(S_i \) to \(S_{i+1} \) we “toggle” the membership of one of its elements. This means that for the transitions we are simply counting the number of sequences of length \(k \) that use numbers from \([n]\). Since there are \(n^k \) such sequences the answer is
\[
2^n n^k.
\]

(b) Prove that there are exactly
\[
\frac{1}{2^n} \sum_{i=0}^{n} \left(\binom{n}{i} (n-2i)^k \right)
\]
such sequences with the additional property that \(S_0 = S_k = \emptyset \).
For ease in notation, let
\[
T_{k,n} = \frac{1}{2^n} \sum_{i=0}^{n} \left(\binom{n}{i} (n-2i)^k \right).
\]
Since every element that is “toggled” in must also be “toggled” out, we are simply counting the number of sequences of length \(k \) of numbers from \([n]\) that use each number an even number of times—for example, we can have
\[
1 \ 2 \ 3 \ 2 \ 3 \ 1 \ 4 \ 4 \ 1 \ 4 \ 4 \ 1.
\]
We will call such a sequence a strongly even.

Now, if \(k \) is odd, this will never work, so the number of ways is 0, which agrees with this formula. Now assume that \(k \) is even. If \(n = 1 \), then there is 1 possibility (all 1s), so
\[
T_{k,n} = 1
\]
for all even \(k \). Now, assume that the formula works for some fixed value \(n \). To count the number of strongly even sequences that use the numbers in \([n+1]\), we break it down into the cases where element \(n + 1 \) appears \(i \) times, and count the number of possibilities for the other \(n \) numbers in the remaining \(k - i \) positions in the sequence:

(i) “\(n + 1 \)” appears 0 times, so the remaining numbers appear \(k \) times. There are \(T_{k,n} \) ways of doing this.

(ii) “\(n + 1 \)” appears 1 time. This is an odd number, and so there should be \(T_{k-1,n} = 0 \) ways of doing this.

(iii) “\(n + 1 \)” appears 2 times, so the remaining numbers appear \(k - 2 \) times. There are \(\binom{k}{2} \) ways for placing the numbers “\(n + 1 \)” and \(T_{k-2,n} \) ways of choosing the remaining numbers, so there are \(\binom{k}{2} T_{k-2,n} \) ways.

(iv) In general, if “\(n + 1 \)” appears \(j \) times, there are \(\binom{k}{j} T_{k-j,n} \) ways. Take note that this works even for odd \(j \) as \(k - j \) is odd, so that while we are counting
\[
\sum_{j=0}^{k/2} \binom{k}{2j} T_{k-2j,n}
\]
it is much more convenient to use the equivalent sum
\[
\sum_{j=0}^{k} \binom{k}{j} T_{k-j,n}
\]
despite the fact that half of its summands are zero.
So now to show that the number of strongly even sequences using the set \([n + 1]\) is equal to \(T_{n+1,k}\) we use some algebra:

\[
\sum_{j=0}^{k} \binom{k}{j} T_{k-j,n} = \sum_{j=0}^{k} \binom{k}{j} \left[\frac{1}{2^n} \sum_{i=0}^{n} \binom{n}{i} (n-2i)^{k-j} \right] = \frac{1}{2^n} \sum_{i=0}^{n} \binom{n}{i} \left[\sum_{j=0}^{k} \binom{k}{j} (n-2i)^{k-j} \right] = \frac{1}{2^n} \sum_{i=0}^{n} \binom{n}{i} (n + 1 - 2i)^{k} = \frac{1}{2^{n+1}} \cdot 2 \left[\binom{n}{0} (n+1)^{k} + \binom{n}{1} (n-1)^{k} + \binom{n}{2} (n-3)^{k} + \cdots + \frac{n}{n} (n-1)^{k} \right] = \frac{1}{2^{n+1}} \left[\binom{n}{0} (n+1)^{k} + \binom{n}{0} (n-1)^{k} + \binom{n}{1} (n-1)^{k} + \binom{n}{n} (n-1)^{k} \right] = \frac{1}{2^{n+1}} \left[\binom{n+1}{0} (n+1)^{k} + \binom{n+1}{1} (n-1)^{k} + \cdots + \frac{n+1}{n} (n-1)^{k} + \frac{n}{n} (n-1)^{k} \right] = \frac{1}{2^{n+1}} \sum_{i=0}^{n} \binom{n+1}{i} (n + 1 - 2i)^{k} = T_{k,n+1}.
\]

And the induction is complete.

(4) (Permutations fixed by \(\hat{\cdot}\)) Let \(\hat{\cdot} : S_n \rightarrow S_n\) be the fundamental transformation of \(S_n\). Prove that the number of permutations \(w\) in \(S_n\) such that \(\hat{w} = w\) is the Fibonacci number \(f_{n+1}\).

We will show that there exists a bijection between compositions of \(n\) consisting of only 1s and 2s and permutations that are fixed by \(\hat{\cdot}\). The bijection \(\phi\) is best given by this example where \(n = 12\):

\[
\phi(1 + 2 + 1 + 1 + 2 + 2 + 1 + 2) = (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) = (1) (32) (4) (5) (76) (98) (10) (1211), \text{ standard form}
\]

\[
= \left(\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 3 & 2 & 4 & 5 & 7 & 6 & 9 & 8 & 10 & 12 & 11
\end{array} \right)
\]

The function \(\phi\) creates
- 1-cycles \((i)\) at position \(i\) (according to the two-line format), and
- 2-cycles \((i + 1 i)\) at positions \(i\) and \(i + 1\), switching the two numbers in the two-line format.

To best see how this works, rewrite the composition as partial sums, so that

\[
\begin{align*}
a_1 &= 1 \\
a_2 &= 3 \\
a_3 &= 4 \\
a_4 &= 5 \\
a_5 &= 7 \\
a_6 &= 9 \\
a_7 &= 10 \\
a_8 &= 12.
\end{align*}
\]

These numbers are strictly increasing and are the initial numbers of the cycles (or the records) and if a number \(i\) is skipped, then it is in the cycle with \(i + 1\). This function is injective as different compositions