1a Give a combinatorial proof that for any positive integers \(n \geq k \),
\[
\binom{n}{k} = \frac{n(n-1)}{k(k-1)}
\]

Solution. A car lot has \(n > 0 \) different black cars. How many different ways are there to put \(k \leq n \) of the cars into a garage so that one of the \(k \) cars in the garage is also painted red?

We could choose \(k \) cars out of \(n \) to move to the garage in \(\binom{n}{k} \) ways. Then there are \(k \) choices for which to paint one of them red. Thus we can accomplish the task in \(k \binom{n}{k} \) ways.

Instead we could first choose which car to paint red and move into the garage; this can be done in \(n \) ways. Then there are \(n-1 \) cars left and we need to choose \(k-1 \) of them to move into the garage with the red car. So we can accomplish the task in \(n \binom{n-1}{k-1} \) ways.

Since we were counting the same thing,
\[
k \binom{n}{k} = n \binom{n-1}{k-1}.
\]

Dividing by \(k \),
\[
\binom{n}{k} = \frac{n(n-1)}{k(k-1)}.
\]

1b Give a combinatorial proof that for any positive integers \(n \geq k \),
\[
\sum_{l=k}^{n} \binom{l}{k} = \binom{n+1}{k+1}
\]

Solution. Let’s count the number of \((k+1)\)-element subsets of \([n+1] = \{1,2,...,n+1\}\).

This can be counted straightforwardly as \(\binom{n+1}{k+1} \).
On the other hand, we can count the total number of subsets with the desired property by counting how many we have with a certain largest element and adding them together. Each of the \((k + 1)\)-element subsets of \([n + 1] = \{1, 2, ..., n + 1\}\) will have a largest element between \(k + 1\) and \(n + 1\) (inclusive). Once we determine what the largest element \(l\) of the set is, we must choose \(k\) additional elements which are less than the largest element to make the \((k + 1)\)-element subset. There are \(l - 1\) elements smaller than \(l\) to choose from. Thus the number of \((k + 1)\)-element subsets of \([n + 1] = \{1, 2, ..., n + 1\}\) is

\[
\sum_{l=k+1}^{n+1} \binom{l-1}{k} = \sum_{l=k}^{n} \binom{l}{k}.
\]

Since we’re counting the same objects,

\[
\sum_{l=k}^{n} \binom{l}{k} = \binom{n+1}{k+1}.
\]

2 A binary word is a word consisting of 0s and 1s. A run is a maximal string of consecutive 1s. For example the word 11010111011 has 4 runs. Find the number of binary words having exactly \(m\) 0s, \(n\) 1s, and \(k\) runs.

Solution. First we must break the \(n\) 1s up into \(k\) runs. This is equivalent to counting the number of \(k\)-compositions of \(n\), so it can be done in \(\binom{n-1}{k-1}\) ways. There must be a 0 between each of the \(k\) runs; thus the position of \(k - 1\) 0s is forced. We are left with \(m - (k - 1) = m - k + 1\) 0s. There are \(k + 1\) places to put these 0s which would result in different binary words: before the first run, between two of the runs, or after the last run. Thus there are \(\binom{k+1}{m-k+1}\) ways to place the remaining 0s. Since these are independent tasks, by the multiplication principle we know that there are \(\binom{n-1}{k-1} \cdot \binom{k+1}{m-k+1}\) binary words having exactly \(m\) 0s, \(n\) 1s, and \(k\) runs.

3a Let \(k, n \geq 1\) be given. Find the number of sequences \(S_0, S_1, ..., S_k\) of subsets of \([n]\) such that for any \(1 \leq i \leq k\) we have either \(S_i \supset S_{i-1}\) and \(|S_i - S_{i-1}| = 1\), or \(S_i \subset S_{i-1}\) and \(|S_{i-1} - S_i| = 1\).

Solution. Consider a subset \(S_{i-1}\) of \([n]\) with \(p\) elements. How many possibilities do we have for \(S_i\)? If \(S_i \supset S_{i-1}\) and \(|S_i - S_{i-1}| = 1\), it means we have added one element to \(S_{i-1}\) to make \(S_i\). There are \(n - p\) ways to do this. If, instead, \(S_i \subset S_{i-1}\) and \(|S_{i-1} - S_i| = 1\), we have deleted one element from \(S_{i-1}\) to achieve \(S_i\). There are \(p\) ways to do this. Thus in general there are \((n-p) + p = n\) possibilities for \(S_i\) given \(S_{i-1}\). There are \(2^n\) choices for which subset of \([n]\) is \(S_0\). Since the sequence \(S_0, S_1, ..., S_k\) has \(k\) additional subsets, and each transition from one set to another is independent, we have a total of \(2^nn^k\) sequences with the desired property.