Our next goal: **CLASSIFYING FINITE COXETER GROUPS**

(W, S) Coxeter gp
S = \{s_1, \ldots, s_n\}
M_{ij} \rightarrow Coxeter
matric

- Basis of V: \(\Delta = \{a_1, \ldots, a_n\} \)
- Bilinear form
 \(\langle d_i, d_j \rangle = -\cos (\pi / m_{ij}) \)

Review of bilinear form

Representing matrix: Let \(e_1, \ldots, e_n \) be a basis.
Suppose that \(\mathbf{u} = \sum_i u_i e_i \), \(\mathbf{v} = \sum_j v_j e_j \), then

\[
\langle \mathbf{u}, \mathbf{v} \rangle = \sum_i u_i v_j \langle e_i, e_j \rangle
\]

\[
= [u_1 \ldots u_n] [\langle e_i, e_j \rangle]_{ij} [v_1 \ldots v_n] = \mathbf{u}^T \mathbf{E} \mathbf{v}
\]

So in coordinates, \(\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^T \mathbf{E} \mathbf{v} \)

If \(f_1, \ldots, f_n \) is a different basis, say

\[
\begin{bmatrix}
 f_1 & f_2 \\
 f_n & f_n
\end{bmatrix} = \begin{bmatrix}
 e_1 & e_2 \\
 e_1 & e_n
\end{bmatrix} M
\]

then \(\mathbf{u} = [f_1 \ldots f_n] \mathbf{u} = [e_1 \ldots e_n] M^{-1} \mathbf{u} \)

So \(u \) has coord. \(M^{-1} \mathbf{u} \) wrt \(\{f_1, \ldots, f_n\} \)

Also check:
\(F = \langle f_i, f_j \rangle \) \(\Rightarrow M^T [\langle e_i, e_j \rangle] M = \mathbf{E} \)

so now
\[
\langle \mathbf{u}, \mathbf{v} \rangle = (M^{-1} \mathbf{u})^T \mathbf{E} M (M^{-1} \mathbf{v}) = \mathbf{u}^T \mathbf{E} \mathbf{v}
\]

Now representing matrix.

If \(\langle \mathbf{x}, \mathbf{x} \rangle \) is symmetric, then \(F \) is symmetric so it can be diagonalized:

\(M^{-1} \mathbf{E} M = \mathbf{D} \) for \(M \) orthogonal

\(M^{-1} = M^T \)

A bilinear form \(\langle \mathbf{x}, \mathbf{x} \rangle \) is positive definite if \(\langle \mathbf{x}, \mathbf{x} \rangle > 0 \) for all \(\mathbf{x} \neq 0 \).

Claim: A symmetric \(\langle \mathbf{x}, \mathbf{x} \rangle \) is positive definite.

It is the Euclidean inner product wrt some basis.

\(\uparrow \) Clear \(\downarrow \): diagonalize it \(\Rightarrow \) get \(\mathbf{D} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \)

so this corresponds to an orthogonal basis.
Theorem: \(W \) is finite if \(\langle , \rangle \) is positive definite.

\(\uparrow \): (Assume some topology for a bit.)

Note \(W \subset \text{GL}(V) \).

\[\text{NH invertible matrices} = \mathbb{R}^{n^2} \]

Claim: \(W \) is discrete.

(No \(u \in W \) such that every \(\text{nbhd} \) of \(u \) contains only many points of \(W \)).

pf. Remember \(W \) acts on \(T \) by cone.

(one chamber per \(w \in W \))

\[\text{Take } x \in D \]

\[\text{Let } U = \{ A \in \text{GL}(V) \mid Ax \in wD \} \]

The only point of \(W \) here is \(w \).

Now if \(\langle , \rangle \) is positive definite then it is Euclidean, so \(W \) acts by real reflections, so \(W \subset O(V) = \text{orthogonal} \) gp.

\[\text{NH matrices with } A^{-1} = A^T \]

Now \(O(V) \subset \mathbb{R}^{n^2} \) is:

- closed because \(O(V) \) is cut out by algebraic equation,

- banded because orthogonal matrices have orthonormal columns, so they have length 1.

So \(O(V) \) is compact.

If \(W \subset O(V) \) was infinite, it would have an accumulation point.

For the other direction we need a bit of representation theory.

Def: A representation of a group \(G \) is a homomorphism \(p: G \rightarrow \text{GL}(V) \) for some vector space \(V \).

(A way of seeing \(G \) as a group of invertible linear transforms (or invertible matrices once we choose a basis for \(V \)).)