Prop. For G is the parabolic subgroup W_I.

We can still get a Coxeter complex.

What if W is infinite?

$W_I \Delta G = \{ x \in G : x \Delta g = x \}$

Set of what?

(a simplicial complex)

Thus, \langle , \rangle is not positive definite.

Not achievable in Euclidean space.

$\langle x, x \rangle = 0$ for all x implies $x = 0$.

So $\langle 0, 0 \rangle = 0$.

$\langle 0, 0 \rangle = 0$ \Rightarrow $\langle x, x \rangle = 0$ \Rightarrow $x = 0$.

We still have a Coxeter complex.

To see the problem:

But a bit differently.

W.

So I can think:

W_I.

There is a maximal proper subset W_1 with nonempty \mathfrak{A}.
(2) \(C = \{ x \in V | \langle x, x \rangle > 0, \langle x, x \rangle > 0 \} = \emptyset \)

Instead of action of \(W \) on \(V \), consider the "contragredient action" of \(W \) on \(V^* \):
\(V^* = \) vector space of linear forms on \(V \).
\(f: V^* \to W \) characterized by
\(w_f(wv) = f(v) \) for all \(v \in V \).

\(\exists \ V : \beta \)

\(\begin{align*}
\alpha x &= -\alpha \\
\beta &= \beta + 2\alpha \\
\beta &= -\beta
\end{align*} \)
\(\Rightarrow \begin{align*}
\alpha A &= -A + 4B \\
\beta A &= A \\
\beta &= B \\
bB &= A - B
\end{align*} \)

\(D = \{ f \in V^* | f(\alpha) > 0, f(\beta) > 0 \} \) fundamental domain

\(U = U \cap D \)

\(\text{Tits cone} \)