

Aaron Dall
Math 490
HW 2

#1

Fix a triangle T in the infinite equilateral triangular grid and let reflection through its bounding hyperplanes be denoted by s_1, s_2, s_3 respectively. Then $s_i^2 = e$ for $i = 1, 2, 3$. Also $(s_is_j)^3 = e$ for $i \neq j$ since such a pair generate a group isomorphic to the dihedral group of the hexagon in which this relation holds.

To see that $S = \{s_1, s_2, s_3\}$ generate all symmetries it suffices to show that S generates the twelve triangles adjacent to T in the grid. These are indeed given by $s_i (i = 1, 2, 3)$, $s_is_j (1 \leq i \neq j \leq 3)$, and $s_1s_2s_1, s_1s_3s_1, s_2s_3s_2$. After reflecting the hyperplanes appropriately, we may now consider any one of these triangles as our fixed triangle and we are done by induction.

Finally, let $w = t_1 \ldots t_k$ be a reduced word in the group generated by S and let $s \in S$ such that $l(sw) \leq l(w)$. We show that $sw = t_1 \ldots \hat{t}_i \ldots t_k$ for some i. If $s = t_1$, then $sw = \hat{t}_1 t_2 \ldots t_k$. Otherwise, $s = t_2$ and $t_3 = t_1$ (by the fact that w was taken reduced). So $st_1 t_2 t_3 \ldots t_k = st_1 t_1 t_4 \ldots t_k = t_1 t_4 \ldots t_k$. But this is exactly $t_1 t_2 \hat{t}_3 \ldots t_k$ and thus we are done.

#2

For a Coxeter system (W,S) let $l : W \rightarrow \mathbb{N}$ take $w \rightarrow k$ where $w = s_1 \ldots s_k$ is a reduced expression for w. Then

(a) $l(uv) \equiv l(u) + l(v) \pmod{2}$.

Proof. Let $u = s_1 \ldots s_k$ and $v = s_{k+1} \ldots s_n$ be reduced expressions for u and v. If $uv = s_1s_2 \ldots s_n$ is a reduced expression for uv, then $l(uv) = l(u) + l(v)$ and the result follows. On the other hand, if $uv = s_1s_2 \ldots s_n$ is not reduced, then we repeatedly apply the deletion property to obtain a reduced expression for uv. Each application of the deletion property preserves the parity of n (since it removes two letters at a time), so $l(uv) \equiv l(u) + l(v) \pmod{2}$.

(b) $l(w^{-1}) = l(w)$

Proof. Since $l(ww^{-1}) = l(e) = 0$, we have that $l(w) \equiv l(w^{-1}) \pmod{2}$, by part (a). Suppose $w = s_1 \ldots s_k$ and $w^{-1} = t_1 \ldots s_{k-2m}$ are reduced expressions for w and w^{-1} (where $m \in \mathbb{Z}_{\geq 0}$). We show that $m = 0$. Since $e = ww^{-1} = s_1 \ldots s_k t_1 \ldots t_{k-2m}$ has length zero, we apply deletion repeatedly to the RHS. But each application must remove an s_i and a t_j since our original expressions for w and w^{-1} were reduced. Therefore, to obtain the empty word we must apply deletion precisely k times. Thus, $m = 0$ as desired.

(c) $l(sw) = l(w) \pm 1$
Proof. If \(w = s_1 \ldots s_k \) be a reduced expression for \(w \). If \(sw \) is reduced, then clearly \(l(sw) = l(w) + 1 \). If \(sw \) is not reduced, then \(sw = s_1 \ldots \hat{s}_i \ldots s_k \) for some \(i \) by the exchange property. This is a reduced expression for \(sw \) since otherwise \(w = s(sw) \) would be expressible as a word of length less than \(k \) which contradicts \(w = s_1 \ldots s_k \) being reduced.

(d) The distance function \(d(u,v) = l(uv^{-1}) \) is a metric on \(W \).

Proof. Since no word can have negative length, the distance function is non-negative. Suppose \(d(u,v) = 0 \). Then \(l(uv^{-1}) = 0 \) implies that \(u = (v^{-1})^{-1} = v \). Thus \(d \) is positive-definite. Since \(vu^{-1} = (uv^{-1})^{-1} \), we have \(l(uv^{-1}) = l(vu^{-1}) \) by part (b), and hence that \(d \) is symmetric. Finally, if \(s_1 \ldots s_k \) and \(t_1 \ldots t_j \) are reduced expressions for \(uw^{-1} \) and \(vw^{-1} \) respectively, then we have a (not necessarily reduced) expression \(uv = uw^{-1}uv^{-1} = s_1 \ldots s_k t_1 \ldots t_j \) of length \(l(uw^{-1}) + l(vw^{-1}) \). So \(d(u,v) \leq d(u,w) + d(w,v) \). So \(d \) is a metric on \(W \).

#3

\[
l(uv) = l(u) + l(v) \text{ iff there is no } t = wsw^{-1} \in T \text{ such that } l(ut) < l(u) \text{ and } l(tv) < l(v).
\]

Proof.

Let \(u = s_1 \ldots s_k \) and \(v = t_1 \ldots t_l \) be reduced expressions for \(u, v \), respectively.

For the forward direction, suppose there is a \(t = wsw^{-1} \in T \) such that \(l(ut) < l(u) \) and \(l(tv) < l(v) \). Then by Corollary 1.14.4 we have \(ut = s_1 \ldots \hat{s}_i \ldots s_k \) for some \(i \) and \(tv = t_1 \ldots \hat{t}_j \ldots t_l \) for some \(j \). Thus

\[
l(uv) = l(uttv)
\]

\[
\leq k + l - 2
\]

\[
< k + l
\]

\[
= l(u) + l(v).
\]

So \(l(uv) \neq l(u) + l(v) \).

For the other direction, we show the \(l(uv) < l(u) + l(v) \) implies the existence of a \(t \in T \) such that \(l(ut) < l(u) \) and \(l(tv) < l(v) \). Toward this end, note \(l(uv) < l(u) + l(v) \) implies that \(uv \) is not reduced. So \(uv = s_1 \ldots \hat{s}_i \ldots s_k t_1 \ldots \hat{t}_j \ldots t_l \) since we started with reduced expressions for \(u \) and \(v \). By Corollary 1.14.4 there is a \(t \in T \) such that \(tv = t_1 \ldots \hat{t}_j \ldots t_l \). Thus \(l(tv) < l(v) \) and (again, by Corollary