Are two ideals equal? (An application)

To test whether \(I = J \), choose any monomial order \(\prec \) and compute the reduced Gröbner basis \(G \) and \(H \) for \(I \) and \(J \). Then

\[I = J \iff G = H \] (by thrm abov)

\[G = H \iff \langle G \rangle = \langle H \rangle = J \]

Ex. 2

\[I = \langle x^3y - xy^2 + 1, x^2y^2 - y^3 - 1 \rangle \]

\[J = \langle xy^3 + y^3 + 1, x^3y - x^3 + 1, x + y \rangle \]

For \(\prec = \text{lex} \) with \(x > y \),

\[G = H = \{ x + y, y^4 - y^3 + 1 \} \]

So \(I = J \).

Ex. 1
lex., \(x > y \) for:

\[I = \langle x^2 + xy + y^2 + y, xy - xy + y^2, xy - y^2 \rangle \]

\[h_1, h_2, h_3 \]

\[S(h_1h_2) = S(h_1h_3) = 0 \mod \{ h_1, h_2, h_3 \} \]

\[S(h_2h_3) = y^5 - y^2 \mod \{ h_1, h_2, h_3 \} \]

\[h_4 \]

\[S(h_1h_4) = S(h_2h_4) = S(h_3h_4) = 0 \mod \{ h_1, h_2, h_3, h_4 \} \]

So \(x^2 + xy + y^2 \) is a Gröbner basis. Then

\[\{ x^2 + xy + y^2, y^5 - y^2 \} \]

is a minimal Gröbner basis. Now

\[x^2 + xy + y^4 \equiv x^2 + xy + y^4 \mod y^5 - y^2 \]

So

\[\{ x^2 + xy + y^4, y^5 - y^2 \} \text{ is the reduced Gröbner basis.} \]

Elimination Theory:
(Solving Systems of Polynomial Equations)
(An application)

Ex.

\[\begin{align*}
x^2 + 2xy + y^2 - 2x - 2y &= 0 \\
x^2 + y^2 &= 1
\end{align*} \]

Elliptic Circle

Clearer manipulation:

\[5y^4 - 4y^3 = 0 \]

\[y = 0 \quad \text{or} \quad y = \frac{4}{5} \]

\[\downarrow \quad \downarrow \]

\[x = 1 \quad x = -\frac{3}{5} \]

How to do this in general?

Same idea:

1. Look for \(p(x_n) = 0 \), solve for \(x_n \).
2. Look for \(q(x_{n-1}, x_n) = 0 \), solve for \(x_{n-1} \) for each sol. in 1.
3. Look for \(r(x_{n-2}, x_{n-1}, x_n) = 0 \), solve for \(x_{n-2} \) for each sol. in 2. in 1.
This "amount" to computing the elimination ideals

\[I_i = I \cap \mathbb{F}[x_1, \ldots, x_n] \]

Theorem Let \(G = \{ g_1, \ldots, g_m \} \) be a G. b. for \(I \) wrt the lex order \(x_1 > \cdots > x_n \), and let \n
\[G_i = G \cap \mathbb{F}[x_1, \ldots, x_n] \]

Then \(G_i \) is a G. b. for \(I_i \) \((wrt \lex, x_1 > \cdots > x_n) \).

So simple!
In particular, \(I_i \neq 0 \iff G_i \neq \emptyset \)

\[\text{[desirable for elimination!]} \]

** Pf.** Need: \(\text{in} (I_i) = \langle \text{in} (G_i) \rangle \)

Let \(f \in I_i \). Since \(G \) is a G. b.,

\[\text{in} (f) = a_1 \text{in} (g_1) + \cdots + a_m \text{in} (g_m) \]

\[\text{in} (f) = \alpha_1 \text{in} (g_1) + \cdots + \alpha_m \text{in} (g_m) \]

\[\text{in} (f) \in \langle \text{in} (g_1), \ldots, \text{in} (g_m) \rangle \] as an ideal in \(\mathbb{F}[x_1, \ldots, x_n] \)

But in lex order, if \(\text{in} (g_a) \) involves only \(x_{i_1} \ldots x_{i_k} \)
then \(g_a \) involves only \(x_{i_1} \ldots x_{i_k} \)

\[\text{so} \ g_a \in G_i \]

So \(\text{in} (f) \in \langle \text{in} (G_i) \rangle \)

Computing \(INJ \):

(An application)

If \(I = \langle f_1, \ldots, f_a \rangle \) and \(J = \langle g_1, \ldots, g_b \rangle \) then

\[I + J = \langle f_1, \ldots, f_a, g_1, \ldots, g_b \rangle \]

\[IJ = \langle f_1 g_1, \ldots, f_1 g_b, \ldots, f_a g_1, \ldots, f_a g_b \rangle \]

\[INJ = ? \]

Prop. a) \(t I + (1-t) J \) is an ideal in \(\mathbb{F}[t, x_1, \ldots, x_n] \)

b) \(\text{in} \cap J = (t I + (1-t) J) \cap \mathbb{F}[x_1, \ldots, x_n] \)

So \(\text{INJ} \) is the first elim. ideal of \(t I + (1-t) J \), wrt. \(t > x_1 > \cdots > x_n \), and we can compute it!

** Pf.** a) clear
b) \(\subseteq \) clear

2: Let \(f = tf_1 + (1-t)f_2 \)

\[f \in \mathbb{F}[x_1, \ldots, x_n], f_1 \in I, f_2 \in J \]

Plugging in \(t = 0 \), we get \(f = f_2 \)

\[\Rightarrow f = f_1 \]

\[\Rightarrow f \in \text{INJ} \]