Idea of Buchberger: Can I generate missing initial monomials using combin. of g_i, ..., g_m?
It suffices to check the "basic" combination $S(g_i, g_j)$:

How do you construct a Gröbner basis?

Buchberger's Algorithm

Input: $<$, I, $F = \{f_1, ..., f_n\}$ generating I
Output: A Gröbner basis G of I (containing F)

Let $G := F$
Let $B := (F)$

While $B \neq 0$:

Pick \{fg\} $\in B$

Let $r = S(f, g) \mod G$

If $r \neq 0$ then

$G := G \cup \{r\}$

$B := B \setminus \{\text{fg}\}$

$B := B \setminus \{\text{fg}\}$

I.e.: Check all pairs \{fg\} in G:

- If $S(f, g) = 0 \mod G$, ok. Go to next pair.
- If $S(f, g) = r \neq 0 \mod G$, add r to S

Repeat until all pairs are ok.

A Gröbner basis $\{g_1, ..., g_m\}$ is minimal if

- each in g_i is monic
- no in g_j is a multiple of in g_i ($j \neq i$)

It is reduced if

- each in g_i is monic
- no term of g_j is a multiple of in g_i ($j \neq i$)

Theorem: Given I, there is a unique reduced Gröbner basis.

Pf. Existence: Start with any Gröbner basis.

1. make each in g_i monic
2. remove any unnecessary in g_i
3. divide each g_i by $g_1, ..., g_i, ..., g_k$

and let the remainder be r_i.

In g_i is not a multiple of in g_j ($i \neq j$).
So it also occurs in $r_i \Rightarrow \text{in}(g_i) = \text{in}(r_i)$

So \{r_1, ..., r_k\} is a reduced Gröbner basis.

Uniqueness: Sup G = \{g_1, ..., g_m\} and G' = \{g_1', ..., g_m'\}

Any two minimal Gröbner bases G and G' I had the same size and leading terms, by HW2).

Say in g_i = in g_i' = h_i; let $f_i = g_i - g_i' \in I$.

in(f_i) $\in \text{in}(I)$ \Rightarrow some $\text{in}(g_j)$ \mid in(f_i)

\Rightarrow $f_i = 0$ \Rightarrow $g_i = g_i'$.