Theorem. The Hilbert series of the Stanley-Reisner ring R/I_Δ of Δ is:

$$H(R/I_\Delta; x) = \sum_{x=\Delta} \frac{\prod_{j=0}^{n} (1-x_j)}{\prod_{i=0}^{n} (1-x_i)}$$

Proof. A basis for R/I_Δ is given by the monomials not in I_Δ:

$$x_{a_1}^{n_1}x_{a_2}^{n_2}...x_{a_n}^{n_n} \in I_\Delta \iff x_\tau | x_{a_1}^{n_1}x_{a_2}^{n_2}...x_{a_n}^{n_n} \quad \tau \in \Delta$$

So

$$H(R/I_\Delta; x) = \sum_{x=\Delta} \frac{x^\alpha}{\prod_{i=0}^{n} (1-x_i)}$$

$$= \sum_{\sigma \in \Delta} x^\alpha$$

$$= \sum_{\sigma \in \Delta} \frac{\prod_{j=0}^{n} (1-x_j)}{\prod_{i=0}^{n} (1-x_i)}$$

Example:

$$\Gamma = \begin{array}{c}
\text{a tetrahedron}
\end{array}$$

$$f_0 + f_1 + f_2 + f_3 + f_4$$

$$= 1 + f_0(1-t) + f_1(1-t)^2 + f_2(1-t)^3$$

Coerce:

$$3x^2 - 2x^2 - x^2 + 1 = \frac{2x^2 + 2x + 1}{(1-x)^3}$$

Def. The f-vector (f_0, f_1, f_2, f_3) of Δ is:

$$f_i = \# \text{ of } i\text{-faces of } \Delta$$

The f-polynomial of Δ is:

$$\sum_{i=0}^{n} f_i t^i$$

The h-polynomials h_0 and h-vectors (h_0, h_1, h_2, h_3) are:

$$\sum_{i=0}^{n} h_i t^i (1-t)^i = \frac{f(x)}{(1-t)^n}$$

Cor. With the coarse grading, if Δ is a simplicial complex, then:

$$H(R/I_\Delta; x) = h_\Delta(x)$$

Proof. $h_0(1) = f_0 > 0$.

Cor. $\dim(R/I_\Delta) = 1 + \dim \Delta$

Dehn-Sommerville Relations, if Δ is a simplicial complex, Δ is the boundary of a d-polytope, h_Δ is symmetric.
It turns out that free resolutions of square-free monomial ideals are very closely related to homology groups of simplicial complexes. So let's learn that.

Algebraic topology:

Top space $X \to \text{Alg. object } A(X)$.

So that if $X = \text{"y" then } A(X) = A(Y)$

Ex. square = circle

coffee cup = donut (homeomorphic)

$\circ \neq \circ$

$\circ \neq \circ$

By triangulating a surface, we make it a simplicial complex.

How do we detect the topology of a simplicial complex electrically?

E.g., how do we "find holes"?

Intuition: holes are cycles which aren't boundaries.

$\partial_t : C_t(\Delta) \to C_{t-1}(\Delta)$

$e_{a_1, \ldots, a_{k-1}} \mapsto \sum_{j=1}^{\binom{n}{j}} (-1)^{j} e_{a_1 \ldots \hat{a_j} \ldots a_{k-1}}$

This is the i-th boundary map.

Prop. $\partial_{t-1} \circ \partial_t = 0$

If $\partial_t : C_t(\Delta) \to C_{t-1}(\Delta)$

$e_{a_1, \ldots, a_{k-1}} \mapsto \sum_{j=1}^{\binom{n}{j}} (-1)^{j} e_{a_1, \ldots, \hat{a_j}, \ldots, a_{k-1}}$

$= \frac{\sum}{j} (-1)^{j} \left(\sum_{k<j} (-1)^{k} e_{a_1, \ldots, \hat{a_k}, \ldots, \hat{a_j}, \ldots, a_{k-1}} \right)$

$= \frac{\sum}{k>j} (-1)^{k} e_{a_1, \ldots, \hat{a_k}, \ldots, \hat{a_j}, \ldots, a_k}$

$= \sum_{r<s} e_{a_1, \ldots, \hat{a_k}, \ldots, \hat{a_j}, \ldots, a_k} (\sum (-1)^{r} e_{a_1, \ldots, \hat{a_k}, \ldots, \hat{a_j}, \ldots, a_k}) = 0$
So we have the (augmented/reduced) chain α of Δ:

$$0 \to C_{d+1}(\Delta) \xrightarrow{\partial_{d+1}} \cdots \xrightarrow{\partial_1} C_0(\Delta) \xrightarrow{\partial_0} C_{-1}(\Delta) \to 0$$

Let $B_i(\Delta) = \text{Im} \partial_i$ be the boundary, and $Z_i(\Delta) = \text{Ker} \partial_i$ be the cycles.

And $\tilde{H}_i(\Delta) = \text{Ker} \partial_i / \text{Im} \partial_{i+1}$ is the i-th reduced homology group of Δ.

Ex.

The boundary of the i-simplex (the sphere S^{n-1})

$$\Delta = \partial \Delta = \{ e \in \mathbb{R}^n \mid e \neq [n] \} \quad n=3$$

$C_i(\Delta) = \text{span}_\mathbb{R} \{ e_1, e_2, \ldots, e_n \}$

which is almost like the free resolvent $\mathbb{R}[x_1, x_2]/(x_1, x_2)$ in HW2. That one gave an exact sequence:

$$0 \to R \xrightarrow{\partial_1} R \xrightarrow{\partial_2} \cdots \xrightarrow{\partial_i} R \xrightarrow{\partial_{i+1}} 0$$

with basically the same map.

In the same way, F_0 is exact except at $F_i(\Delta) = C_m(\Delta)$, where

$$\tilde{H}_m(\Delta) = \text{Ker} \partial_m / \text{Im} \partial_0 = \text{Im} \partial_m$$

which is

$$\text{span}_\mathbb{R} \{ e_1, e_2, \ldots, e_m \}$$

So $\tilde{H}_i(S^{n-1}) = \begin{cases} \mathbb{R} & \text{if } i = n-1 \\ 0 & \text{otherwise} \end{cases}$
Two topological spaces \(X \) and \(Y \) are **homeomorphic** if there is \(f: X \rightarrow Y \) such that:
- \(f \) is bijective
- \(f \) is continuous
- \(f^{-1} \) is continuous

Think: deform \(X \) to \(Y \) continuously.

Ex:
- \(\mathbb{R}^2, \mathbb{C} \): yes
- \(\mathbb{R}, \mathbb{R}^2 \): yes
- \(\mathbb{R}^2, \mathbb{R}^2 \): no (\(m \neq n \))
- \(\mathbb{R} \times \mathbb{R} \): n-simplex: no (\(n \geq 1 \))

Then if \(X \) and \(Y \) are homeomorphic, they have the same homology groups.

Then if \(X \) and \(Y \) are homotopy equivalent then they have the same homology groups.

Ex:

\[X = B^n = \left\{ x \in \mathbb{R}^n \mid \left\| x \right\|_2 \leq 1 \right\} \]

\[Y = \{0\} \subset \mathbb{R}^n \]

Let \(f: X \rightarrow Y \)

\[g: Y \rightarrow X \]

Then

\[f \circ g: Y \rightarrow X \]

\[g \circ f: X \rightarrow X \]

\[x \mapsto 0 \quad 0 \mapsto 0 \]

\[x \mapsto 0 \quad x \mapsto 0 \]

\[\text{is the identity} \quad \text{is homotopic to the identity} \]

Since \(B^n \) and \(\Delta^n \) are homotopic

\(B^n \) and \(\Delta^n \) are homotopic to the identity

Then \(\tilde{H}_i(\Delta^n) = \tilde{H}_i(*) = 0 \) for all \(i \).

So the chain complex for \(\Delta^{n+1} \) is exact:

\[0 \rightarrow \mathbb{F} \overset{\partial_n}{\longrightarrow} \mathbb{F} \overset{\partial_{n-1}}{\longrightarrow} \cdots \overset{\partial_2}{\longrightarrow} \mathbb{F} \overset{\partial_1}{\longrightarrow} \mathbb{F} \overset{\partial_0}{\longrightarrow} 0 \]

Hence the chain complex for \(\partial \Delta^{n-1} = \Sigma^{n-2} \):

\[0 \rightarrow \mathbb{F} \overset{\partial^{n-1}}{\longrightarrow} \cdots \overset{\partial_2}{\longrightarrow} \mathbb{F} \overset{\partial_1}{\longrightarrow} \mathbb{F} \overset{\partial_0}{\longrightarrow} 0 \]

It is exact except at \(C_1 \) when \(\tilde{H}_1(\partial \Delta^n) = \mathbb{F} \).

This gives another proof for the homology of the sphere.