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POSITROIDS AND NON-CROSSING PARTITIONS

FEDERICO ARDILA, FELIPE RINCÓN, AND LAUREN WILLIAMS

Abstract. We investigate the role that non-crossing partitions play in the
study of positroids, a class of matroids introduced by Postnikov. We prove
that every positroid can be constructed uniquely by choosing a non-crossing
partition on the ground set, and then placing the structure of a connected
positroid on each of the blocks of the partition. This structural result yields
several combinatorial facts about positroids. We show that the face poset of
a positroid polytope embeds in a poset of weighted non-crossing partitions.
We enumerate connected positroids, and show how they arise naturally in free
probability. Finally, we prove that the probability that a positroid on [n] is
connected equals 1/e2 asymptotically.
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1. Introduction

A positroid is a matroid on an ordered set which can be represented by the
columns of a full rank d× n real matrix such that all its maximal minors are non-
negative. Such matroids were first considered by Postnikov [Pos] in his study of
the totally non-negative part of the Grassmannian. In particular, Postnikov showed
that positroids are in bijection with several interesting classes of combinatorial

Received by the editors October 18, 2013 and, in revised form, November 5, 2013.
2010 Mathematics Subject Classification. Primary 05A15, 05B35, 14M15, 14P10, 46L53.
The first author was partially supported by the National Science Foundation CAREER Award

DMS-0956178 and the SFSU-Colombia Combinatorics Initiative.
The second author was supported by the EPSRC grant EP/I008071/1.
The third author was partially supported by the National Science Foundation CAREER award

DMS-1049513.

c©2015 American Mathematical Society

337

http://www.ams.org/tran/
http://www.ams.org/tran/
http://dx.doi.org/10.1090/tran/6331


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

338 FEDERICO ARDILA, FELIPE RINCÓN, AND LAUREN WILLIAMS

objects, including Grassmann necklaces, decorated permutations,

Γ

-diagrams, and
equivalence classes of plabic graphs.

Positroids have many nice matroidal properties. They are closed under restric-
tion, contraction, and duality, as well as a cyclic shift of the ground set. Positroid
polytopes also have nice properties. A general matroid polytope for a matroid on
the ground set [n] can be described by using 2n inequalities; in contrast, as we
describe in Section 5, a positroid polytope for a rank d positroid on [n] can be
described using (d+ 1)n inequalities.

The main structural result of this paper shows the connection between positroids
and non-crossing partitions. In Theorem 7.6 we prove that the connected compo-
nents of a positroid form a non-crossing partition of its ground set. Conversely,
each positroid on [n] can be uniquely constructed by choosing a non-crossing par-
tition (S1, . . . , St) of [n], and then putting the structure of a connected positroid
on each block Si. The first statement was also discovered in [OPS], where it is
stated without proof, and in [For13]. We also give an alternative description of this
non-crossing partition in terms of Kreweras complementation.

Our structural result allows us to enumerate connected positroids, as described
in Theorem 10.6. Along the way, we show in Corollary 7.11 that the connected
positroids on [n] are in bijection with the stabilized-interval-free permutations on
[n]; that is, the permutations π such that π(I) �= I for all intervals I � [n]. We then
show in Theorem 10.7 that the proportion of positroids on [n] which are connected
is equal to 1/e2 asymptotically. This result is somewhat surprising in light of the
conjecture [MNWW11] that “most matroids are connected”; more specifically, that
as n goes to infinity, the ratio of connected matroids on [n] to matroids on [n] tends
to 1.

Our enumerative results on positroids also allow us to make a connection to free
probability. Concretely, we show that if Y is the random variable 1 +Exp(1), then
the nth moment mn(Y ) equals the number of positroids on [n], and the nth free
cumulant kn(Y ) equals the number of connected positroids on [n].

We also obtain some results on the matroid polytope of a positroid. In Proposi-
tion 5.5 we state and prove an inequality description for positroid polytopes, which
we learned from Alex Postnikov [Pos12] and will appear in [LP]. More strongly, we
show in Theorem 9.3 that the face poset of a positroid polytope naturally embeds
in a poset of weighted non-crossing partitions.

The structure of this paper is as follows. In Section 2 we review the notion of
a matroid, as well as the operations of restriction, contraction, and duality. In
Section 3 we show that positroids are closed under these operations as well as a
cyclic shift of the ground set. We also show that if {S1, . . . , St} is a non-crossing
partition of [n], and Mi is a positroid on Si, then the direct sum of the Mis is a
positroid. In Section 4 we review Postnikov’s notion of Grassmann necklaces, deco-
rated permutations,

Γ

-diagrams, and plabic graphs, all of which are combinatorial
objects parameterizing positroids. We review some of the bijections between them.
In Section 5 we turn our attention to positroid polytopes, and provide a simple
inequality description of them due to Postnikov. We also show that each face of
a positroid polytope is a positroid polytope. In Section 6 we explain how to read
the bases and basis exchanges of a positroid from a corresponding plabic graph.
In Section 7 we prove our main structural result on positroids, that the connected
components of a positroid comprise a non-crossing partition of the ground set. We
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also prove a converse to this result. The proofs of these results use plabic graphs
as well as positroid polytopes. In Section 8 we give an alternative description of
the non-crossing partition of a positroid, relating the Kreweras complement of the
partition to the positroid polytope. In Section 9 we define the poset of weighted
non-crossing partitions, and show that the face poset of a positroid polytope is
embedded in it. In Section 10 we give our enumerative results for positroids, and
in Section 11 we make the connection to free probability.

2. Matroids

A matroid is a combinatorial object which unifies several notions of indepen-
dence. Among the many equivalent ways of defining a matroid we will adopt the
point of view of bases, which is one of the most convenient for the study of positroids
and matroid polytopes. We refer the reader to [Oxl92] for a more in-depth intro-
duction to matroid theory.

Definition 2.1. A matroid M is a pair (E,B) consisting of a finite set E and
a non-empty collection of subsets B = B(M) of E, called the bases of M , which
satisfy the basis exchange axiom:

If B1, B2 ∈ B and b1 ∈ B1 −B2, then there exists b2 ∈ B2 −B1 such that

B1 − {b1} ∪ {b2} ∈ B.

The set E is called the ground set of M ; we also say that M is a matroid on
E. A subset F ⊂ E is called independent if it is contained in some basis. All the
maximal independent sets contained in a given set A ⊂ E have the same size, which
is called the rank rM (A) = r(A) of A. In particular, all the bases of M have the
same size, which is called the rank r(M) of M .

Example 2.2. Let A be a d × n matrix of rank d with entries in a field K, and
denote its columns by a1, a2, . . . , an ∈ Kd. The subsets B ⊂ [n] for which the
columns {ai | i ∈ B} form a linear basis for Kd are the bases of a matroid M(A)
on the set [n]. Matroids arising in this way are called representable, and motivate
much of the theory of matroids. ♦

There are several natural operations on matroids.

Definition 2.3. Let M be a matroid on E and N a matroid on F . The direct sum
of matroids M and N is the matroid M ⊕ N whose underlying set is the disjoint
union of E and F , and whose bases are the disjoint unions of a basis of M with a
basis of N .

Definition 2.4. Given a matroid M = (E,B), the orthogonal or dual matroid
M∗ = (E,B∗) is the matroid on E defined by B∗ = {E −B | B ∈ B}.

Definition 2.5. Given a matroid M = (E,B), and a subset S of E, the restriction
of M to S, written M |S, is the matroid on the ground set S whose independent
sets are all independent sets of M which are contained in S. Equivalently, the set
of bases of M |S is

B(M |S) = {B ∩ S | B ∈ B, and |B ∩ S| is maximal among all B ∈ B}.

The dual operation of restriction is contraction.
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Definition 2.6. Given a matroid M = (E,B) and a subset T of E, the contraction
of M by T , written M/T , is the matroid on the ground set E − T whose bases are
the following:

B(M/T ) = {B − T | B ∈ B, and |B ∩ T | is maximal among all B ∈ B}.

Proposition 2.7 ([Oxl92, Chapter 3.1, Exercise 1]). If M is a matroid on E and
S ⊂ E, then

(M/S)∗ = M∗|(E − S).

3. Positroids

In this paper we study a special class of representable matroids introduced by
Postnikov in [Pos]. We begin by collecting several foundational results on positroids,
most of which are known [Oh11,Pos].

Definition 3.1. Suppose A is a d×nmatrix of rank d with real entries such that all
its maximal minors are non-negative. Such a matrix A is called totally non-negative,
and the representable matroid M(A) associated to A is called a positroid.

Remark 3.2. We will often identify the ground set of a positroid with the set [n], but
more generally, the ground set of a positroid may be any finite set E = {e1, . . . , en},
endowed with a specified total order e1 < · · · < en. Note that the fact that a given
matroid is a positroid is strongly dependent on the total order of its ground set; in
particular, being a positroid is not invariant under matroid isomorphism.

If A is as in Definition 3.1 and I ∈
(
[n]
d

)
is a d-element subset of [n], then we let

ΔI(A) denote the d× d minor of A indexed by the column set I. These minors are
called the Plücker coordinates of A.

In our study of positroids, we will repeatedly make use of the following notation.
Given k, � ∈ [n], we define the (cyclic) interval [k, �] to be the set

[k, �] :=

{
{k, k + 1, . . . , �} if k ≤ �,

{k, k + 1, . . . , n, 1, . . . , �} if � < k.

We also refer to a cyclic interval as a cyclically consecutive subset of [n]. We will
often put a total order on a cyclic interval: in the first case above we use the
total order k < k + 1 < · · · < �, and in the second case, we use the total order
k < k + 1 < · · · < n < 1 < · · · < �.

Positroids are closed under several key operations:

Lemma 3.3. Let M be a positroid on the ground set E = {1 < · · · < n}. Then for
any 1 ≤ a ≤ n, M is also a positroid on the ordered ground set {a < a+ 1 < · · · <
n < 1 < · · · < a− 1}.

Proof. LetM = M(A) for some totally non-negative full rank d×nmatrix A. Write
A = (v1, . . . , vn) as a concatenation of its column vectors vi ∈ Rd. Then, as noted
in [Pos, Remark 3.3], the matrix A′ = (v2, . . . , vn, (−1)d−1v1) obtained by cyclically
shifting the columns of A and multiplying the last column by (−1)d−1 is also totally
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non-negative. Moreover, ΔI(A) = ΔI′(A′), where I ′ is the cyclic shift of the subset
I. Therefore M(A′) is a positroid, which coincides with M after cyclically shifting
the ground set. It follows that M is a positroid on {2 < 3 < · · · < n < 1}, and by
iterating this construction, the lemma follows. �
Proposition 3.4. Suppose we have a decomposition of [n] into two cyclic intervals
[�+ 1,m] and [m+ 1, �]. Let M be a positroid on the ordered ground set [�+ 1,m]
and let M ′ be a positroid on the ordered ground set [m+ 1, �]. Then M ⊕M ′ is a
positroid on the ordered ground set [n] = {1 < · · · < n}.
Proof. First assume � = n. LetM be a positroid on the ground set [m] = {1 < · · · <
m} and M ′ be a positroid on the ground set {m+ 1 < · · · < n}. Then M = M(A)
and M ′ = M(B), where A and B are full rank d × m and d′ × (n − m) matrices
whose maximal minors are non-negative. Use A and B to form the (d + d′) × n
block matrix of the form (

A 0
0 B

)
.

Clearly this matrix has all maximal minors non-negative and represents the direct
sum M(A)⊕M(B) of the matroids M(A) and M(B). It follows that M ⊕M ′ is a
positroid. Now the proposition follows from Lemma 3.3. �

The following proposition says that positroids are closed under duality, restric-
tion, and contraction.

Proposition 3.5. Let M be a positroid on [n]. Then M∗ is also a positroid on
[n]. Furthermore, for any subset S of [n], the restriction M |S is a positroid on S,
and the contraction M/S is a positroid on [n]− S. Here the total orders on S and
[n]− S are the ones inherited from [n].

Proof. Consider a full rank d × n real matrix A such that M = M(A) and all
maximal minors of A are nonnegative. By performing row operations on A and
multiplying rows by −1 when necessary, we may assume without loss of generality
that A is in reduced row-echelon form. In particular, A contains the identity matrix
in columns i1, i2, . . . , id for some i1 < · · · < id. Let J = {i1, . . . , id} and Jc =
[n]− {i1, . . . , id}. Let us label the rows of A by i1, . . . , id from top to bottom, and
the columns of A by 1, 2, . . . , n from left to right. If the entry of A in row s and
column t is not determined to be 0 or 1 by the row-echelon form (here we have
necessarily that s < t), let us denote it by

(−1)qstast, where qst = |{s+ 1, s+ 2, . . . , t− 1} ∩ J |.
See the first matrix in Example 3.6.

Now we construct an (n − d) × n matrix A′ = (a′ij), with rows labeled by
Jc = [n]−{i1, . . . , id} from top to bottom, and columns labeled by 1, 2, . . . , n from
left to right, as follows. First we place the identity matrix in columns J . Next, we
set to 0 every entry of A′ which is in the same row as and to the right of a 1. For
the remaining entries we define a′ij = ±aji. More specifically, for the entry a′ts in
row t and column s (here we have necessarily that s < t) we set

a′ts = (−1)q
′
stast, where q′st = |{s+ 1, s+ 2, . . . , t− 1} ∩ Jc|.

See the second matrix in Example 3.6. It is not hard to check that for each I ∈
(
[n]
d

)
,

we have that ΔI(A) = Δ[n]−I(A
′). It follows that M(A′) is the dual M∗ of M and

is also a positroid, as we wanted.
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We will now prove that the contraction M/S is a positroid on [n]−S. If S1∩S2 =
∅, then (M/S1)/S2 = M/(S1∪S2), so by induction it is enough to prove that M/S
is a positroid for S a subset of size 1. Moreover, in view of Lemma 3.3, we can
assume without loss of generality that S = {1}. Again, suppose that A = (aij) is a
full rank d× n real matrix in reduced row-echelon form such that M = M(A) and
all maximal minors of A are non-negative. If {1} is a dependent subset in M , then
the first column of A contains only zeros, and M/S is the rank d positroid on S
represented by the submatrix of A obtained by eliminating its first column. If {1} is
an independent subset in M , then the first column of A is the vector e1 ∈ Rd. The
matroid M/S is then represented by the submatrix A′ of A obtained by eliminating
its first column and its first row, which also has non-negative maximal minors since
ΔI(A

′) = Δ{1}∪I(A).
Finally, since positroids are closed under duality and contraction, by Proposition

2.7 they are also closed under restriction. �

Example 3.6. Let

A =

(
0 1 a23 0 −a25 −a26
0 0 0 1 a45 a46

)
represent a matroid M(A) on [6]. Then the matrix A′ as defined in the proof of
Proposition 3.5 is given by

A′ =

⎛⎜⎜⎝
1 0 0 0 0 0
0 a23 1 0 0 0
0 −a25 0 a45 1 0
0 a26 0 −a46 0 1

⎞⎟⎟⎠ ,

and M(A′) = M(A)∗. Moreover, for each I ∈
(
[6]
2

)
, ΔI(A) = Δ[6]−I(A

′). ♦

4. Combinatorial objects parameterizing positroids

In [Pos], Postnikov gave several families of combinatorial objects in bijection
with positroids. In this section we will start by defining his notion of a Grassmann
necklace, and explain how each one naturally labels a positroid. We will then
define decorated permutations,

Γ

-diagrams, and equivalence classes of reduced plabic
graphs, and give (compatible) bijections among all these objects. This will give us
a canonical way to label each positroid by a Grassmann necklace, a decorated
permutation, a

Γ

-diagram, and a plabic graph.

4.1. Grassmann necklaces.

Definition 4.1. Let d ≤ n be positive integers. A Grassmann necklace of type

(d, n) is a sequence (I1, I2, . . . , In) of d-subsets Ik ∈
(
[n]
d

)
such that for any i ∈ [n]

• if i ∈ Ii, then Ii+1 = Ii − {i} ∪ {j} for some j ∈ [n],
• if i /∈ Ii, then Ii+1 = Ii,

where In+1 = I1.

The i-order <i on the set [n] is the total order

i <i i+ 1 <i · · · <i n <i 1 <i · · · <i i− 2 <i i− 1.
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For any rank d matroid M = ([n],B), let Ik be the lexicographically minimal basis
of M with respect to the order <k, and denote

I(M) := (I1, I2, . . . , In).

Proposition 4.2 ([Pos, Lemma 16.3]). For any matroid M = ([n],B) of rank d,
the sequence I(M) is a Grassmann necklace of type (d, n).

In the case where the matroid M is a positroid, we can actually recover M from
its Grassmann necklace, as described below.

Let i ∈ [n]. The Gale order on
(
[n]
d

)
(with respect to <i) is the partial order

≤i defined as follows: for any two d-subsets S = {s1 <i · · · <i sd} ⊂ [n] and
T = {t1 <i · · · <i td} ⊂ [n], we have S ≤i T if and only if sj ≤i tj for all j ∈ [d].

Theorem 4.3 ([Pos,Oh11]). Let I = (I1, I2, . . . , In) be a Grassmann necklace of
type (d, n). Then the collection

B(I) :=
{
B ∈

(
[n]

d

) ∣∣∣∣ B ≥j Ij for all j ∈ [n]

}
is the collection of bases of a rank d positroid M(I) := ([n],B(I)). Moreover, for
any positroid M we have M(I(M)) = M .

Theorem 4.3 shows that M and I are inverse bijections between the set of
Grassmann necklaces of type (d, n) and the set of rank d positroids on the set [n].

We record the following fact for later use. It follows directly from the definitions.

Proposition 4.4. Let M be a matroid. Then every basis of M is also a basis of
the positroid M(I(M)).

Note that for any matroid M , the positroid M(I(M)) is the smallest positroid
containing M , in the sense that any positroid containing all bases of M must also
contain all bases of M(I(M)).

4.2. Decorated permutations. The information contained in a Grassmann neck-
lace can be encoded in a more compact way, as follows.

Definition 4.5. A decorated permutation of the set [n] is a bijection π : [n] → [n]
whose fixed points are colored either “clockwise” or “counterclockwise”. We denote
a clockwise fixed point by π(j) = j and a counterclockwise fixed point by π(j) = j.
A weak i-excedance of the decorated permutation π is an element j ∈ [n] such that
either j <i π(j) or π(j) = j is a “counterclockwise” fixed point. The number of
weak i-excedances of π is the same for any i ∈ [n]; we will simply call it the number
of weak excedances of π.

Given a Grassmann necklace I = (I1, I2, . . . , In) we can construct a decorated
permutation πI of the set [n] in the following way:

• If Ii+1 = Ii − {i} ∪ {j} for i �= j, then πI(j) := i.
• If Ii+1 = Ii and i /∈ Ii, then πI(i) := i.
• If Ii+1 = Ii and i ∈ Ii, then πI(i) := i.
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Conversely, given a decorated permutation π of [n] we can construct a Grassmann
necklace Iπ = (I1, I2, . . . , In) by letting Ik be the set of weak k-excedances of π. It
is straightforward to verify the following.

Proposition 4.6. The maps I 
→ πI and π 
→ Iπ are inverse bijections between
the set of Grassmann necklaces of type (d, n) and the set of decorated permutations
of [n] having exactly d weak excedances.

4.3. Le-diagrams.

Definition 4.7. Fix d and n. For any partition λ, let Yλ denote the Young diagram
associated to λ. A

Γ

-diagram (or Le-diagram) D of shape λ and type (d, n) is a
Young diagram Yλ contained in a d× (n− d) rectangle, whose boxes are filled with
0s and +s in such a way that the

Γ

-property is satisfied; there is no 0 which has a
+ above it in the same column and a + to its left in the same row. See Figure 1
for an example of a

Γ

-diagram.

Figure 1. A Le-diagram with λ = 5532, d = 4, and n = 10.

Lemma 4.8. The following algorithm is a bijection between

Γ

-diagrams of type
(d, n) and decorated permutations on n letters with d weak excedances:

(1) Replace each + in the

Γ

-diagram D with an elbow joint �� , and each 0 in
D with a cross .

(2) Note that the south and east borders of Yλ give rise to a length-n path from
the northeast corner to the southwest corner of the d × (n − d) rectangle.
Label the edges of this path with the numbers 1 through n.

(3) Now label the edges of the north and west borders of Yλ so that opposite
horizontal edges and opposite vertical edges have the same label.

(4) View the resulting “pipe dream” as a permutation π ∈ Sn, by following
the “pipes” from the northwest border to the southeast border of the Young
diagram. If the pipe originating at label i ends at the label j, we define
π(i) = j.

(5) If π(j) = j and j labels two horizontal (respectively, vertical) edges of Yλ,
then π(j) := j (respectively, π(j) := j).

Figure 2 illustrates this procedure for the

Γ

-diagram of Figure 1, giving rise to
the decorated permutation 1, 7, 9, 3, 2, 6, 5, 10, 4, 8.
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Figure 2. A “pipe dream”.

4.4. Plabic graphs.

Definition 4.9. A plabic graph1 is an undirected graph G drawn inside a disk
(considered modulo homotopy) with n boundary vertices on the boundary of the
disk, labeled b1, . . . , bn in clockwise order, as well as some colored internal vertices .
These internal vertices are strictly inside the disk and are colored in black and
white. Moreover, each boundary vertex bi in G is incident to a single edge.

A perfect orientation O of a plabic graph G is a choice of orientation of each
of its edges such that each black internal vertex u is incident to exactly one edge
directed away from u, and each white internal vertex v is incident to exactly one
edge directed towards v. A plabic graph is called perfectly orientable if it admits
a perfect orientation. Let GO denote the directed graph associated with a perfect
orientation O of G. The source set IO ⊂ [n] of a perfect orientation O is the set of
i for which bi is a source of the directed graph GO. Similarly, if j ∈ IO := [n]− IO,
then bj is a sink of O.

Figure 5b shows a plabic graph. We invite the reader to construct a perfect
orientation for it.

All perfect orientations of a fixed plabic graph G have source sets of the same
size d, where d−(n−d) =

∑
color(v) ·(deg(v)−2). Here the sum is over all internal

vertices v, color(v) = 1 for a black vertex v, and color(v) = −1 for a white vertex;
see [Pos]. In this case we say that G is of type (d, n).

The following construction, which comes from [Pos, Section 20], associates a
plabic graph to a

Γ

-diagram.

Definition 4.10. Let D be a

Γ

-diagram. Delete the 0s, and replace each + with
a vertex. From each vertex we construct a hook which goes east and south, to the
border of the Young diagram. The resulting diagram is called the “hook diagram”
H(D). After replacing the edges along the south and east borders of the Young
diagram with boundary vertices labeled by 1, 2, . . . , n, we obtain a graph with n
boundary vertices and one internal vertex for each + from D. Then we replace the
local region around each internal vertex as in Figure 3, and embed the resulting
bi-colored graph in a disk. Finally, for each clockwise (respectively, counterclock-
wise) fixed point, we add a black (respectively, white) boundary “lollipop” at the
corresponding boundary vertex. This gives rise to a plabic graph which we call
G(D).

1“Plabic” stands for “planar bi-colored”.
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Figure 3. Local substitutions for getting the plabic graph G(D)
from the hook diagram H(D).

(a) A hook diagram. (b) A plabic graph.

Figure 4

Figure 4a depicts the hook diagram corresponding to the

Γ

-diagram given in
Figure 1, and Figure 4b shows its corresponding plabic graph.

More generally each

Γ

-diagram D is associated with a family of reduced plabic
graphs consisting of G(D) together with other plabic graphs which can be obtained
from G(D) by certain moves ; see [Pos, Section 12].

From the plabic graph constructed in Definition 4.10 (and more generally from
any leafless reduced plabic graph G without isolated components), one may read
the corresponding decorated permutation πG as follows.

Definition 4.11. Let G be a reduced plabic graph as above with boundary vertices
b1, . . . , bn. The trip from bi is the path obtained by starting from bi and traveling
along edges of G according to the rule that each time we reach an internal white
vertex we turn right, and each time we reach an internal black vertex we turn left.
This trip ends at some boundary vertex bπ(i). If the starting and ending points
of the trip are the same vertex bj , we set the color of the fixed point π(j) = j to
match the orientation of the trip (clockwise or counterclockwise.) In this way we
associate a decorated permutation πG = (π(1), . . . , π(n)) to each reduced plabic
graph G, which is called the decorated trip permutation of G.

We invite the reader to verify that when we apply these rules to Figure 4b we
obtain the trip permutation 1, 7, 9, 3, 2, 6, 5, 10, 4, 8.

Remark 4.12. All bijections that we have defined in this section are compatible.
This gives us a canonical way to label each positroid of rank d on [n] by a Grassmann
necklace, a decorated permutation, a

Γ

-diagram, and an equivalence class of plabic
graphs.
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5. Positroid polytopes

The following geometric representation of a matroid will be useful in our study
of positroids.

Definition 5.1. Given a matroid M = ([n],B), the (basis) matroid polytope ΓM

of M is the convex hull of the indicator vectors of the bases of M :

ΓM := convex{eB | B ∈ B} ⊂ Rn,

where eB :=
∑

i∈B ei, and {e1, . . . , en} is the standard basis of Rn.

When we speak of “a matroid polytope”, we refer to the polytope of a specific
matroid in its specific position in Rn.

The following elegant characterization of matroid polytopes is due to Gelfand,
Goresky, MacPherson, and Serganova.

Theorem 5.2 ([GGMS87]). Let B be a collection of subsets of [n] and let ΓB :=
convex{eB | B ∈ B} ⊂ Rn. Then B is the collection of bases of a matroid if and
only if every edge of ΓB is a parallel translate of ei − ej for some i, j ∈ [n].

When the conditions of Theorem 5.2 are satisfied, the edges of ΓB correspond
exactly to the basis exchanges, that is, to the pairs of distinct bases B1, B2 such
that B2 = B1 − {i} ∪ {j} for some i, j ∈ [n]. Two such bases are called adjacent
bases.

The following result is a restatement of the greedy algorithm for matroids.

Proposition 5.3 ([BGW03, Exercise 1.26], [AK06, Prop. 2]). Let M be a matroid
on [n]. Then any face of the matroid polytope ΓM is itself a matroid polytope. More
specifically, let w : Rn → R be a linear functional. Let wi = w(ei); note that by
linearity, these values determine w. Consider the flag of sets ∅ = A0 � A1 � · · · �
Ak = [n] such that wa = wb for a, b ∈ Ai − Ai−1, and wa < wb for a ∈ Ai − Ai−1

and b ∈ Ai+1 −Ai. Then the face of ΓM minimizing the linear functional w is the
matroid polytope of the matroid

k⊕
i=1

(M |Ai)/Ai−1.

We now study inequality descriptions of positroid polytopes.

Proposition 5.4 ([Wel76]). Let M = ([n],B) be any matroid of rank d, and let
rM : 2[n] → Z≥0 be its rank function. Then the matroid polytope ΓM can be
described as

ΓM =

⎧⎨⎩x ∈ Rn

∣∣∣∣∣∣
∑
i∈[n]

xi = d,
∑
i∈A

xi ≤ rM (A) for all A ⊂ [n]

⎫⎬⎭ .

Proposition 5.4 describes a general matroid polytope using the 2n inequalities
arising from the rank of all the subsets of its ground set. For positroid polytopes,
however, there is a much shorter description, which we learned from Alex Postnikov
[Pos12], and will appear in an upcoming preprint with Thomas Lam [LP].
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Proposition 5.5. Let I = (I1, I2, . . . , In) be a Grassmann necklace of type (d, n),
and let M = M(I) be its corresponding positroid. For any j ∈ [n], suppose the

elements of Ij are aj1 <j aj2 <j · · · <j ajd. Then the matroid polytope ΓM can be
described by the inequalities

x1 + x2 + · · ·+ xn = d,(1)

xj ≥ 0 for all j ∈ [n],(2)

xj + xj+1 + · · ·+ xaj
k−1 ≤ k − 1 for all j ∈ [n] and k ∈ [d],(3)

where all the subindices are taken modulo n.

In Proposition 5.5, when we refer to taking some number i modulo n, we mean
taking its representative modulo n in the set {1, . . . , n}.

Proof. Let P be the polytope described by (1), (2), and (3). First we claim that
the vertices of P are 0/1 vectors. To see this, rewrite the polytope in terms of the
“y-coordinates” given by yi = x1 + · · ·+ xi for 1 ≤ i ≤ n− 1. The inequalities of P
are of the form yi−yj ≤ aij for integers aij . Since the matrix whose row vectors are
ei − ej is totally unimodular [Sch86], the vertices of P have integer y-coordinates,
and hence also integer x-coordinates. The inequalities (2) and (3) (for k = 2) imply
that the x-coordinates of any vertex are all equal to 0 or 1.

Since P and ΓM are both 0/1 polytopes, it suffices to show that they have
the same vertices. But for a 0/1 vector eB satisfying (1), the inequalities (3) are
equivalent to B ≥j Ij for all j, i.e., to B ∈ B(I), as desired. �

Proposition 5.6. A matroid M of rank d on [n] is a positroid if and only if
its matroid polytope ΓM can be described by the equality x1 + · · · + xn = d and
inequalities of the form ∑

�∈[i,j]

x� ≤ aij , with i, j ∈ [n].

Proof. It follows from Proposition 5.5 that all positroid polytopes have the desired
form (note that xj ≥ 0 is equivalent to xj+1 + · · · + xj−1 ≤ d). To prove the
converse, assume M is a rank d matroid on the set [n] whose polytope ΓM admits
a description as above. Let rij = rM ([i, j]) be the rank in M of the cyclic interval
[i, j]. If ΓM satisfies an inequality

∑
�∈[i,j] x� ≤ aij , then it is easy to see that rij

must be equal to aij . Certainly each vertex in ΓM satisfies
∑

�∈[i,j] x� ≤ rij , and

we can find a basis B on which B ∩ [i, j] = rij , so equality is achieved for eB. The
polytope ΓM is then described by the inequalities

x1 + x2 + · · ·+ xn = d,

xi + xi+1 + · · ·+ xj ≤ rij for all i, j ∈ [n].

Let I := I(M) = (I1, I2, . . . , In) be the Grassmann necklace associated to M ,
and M ′ := M(I(M)) its corresponding positroid. We will show that M = M ′.

By Proposition 4.4, we know that every basis of M is also a basis of M ′. Now,
suppose that B is basis of M ′, and consider any cyclic interval [i, j]. Denote Ii =:
{a1 <i a2 <i · · · <i ad}, and let k = |Ii ∩ [i, j]|. Then i ≤ j ≤ ak+1 − 1 in cyclic
order. Combining this with Proposition 5.5, we see that the vertex eB of ΓM ′

satisfies a tight inequality

xi + xi+1 + · · ·+ xj ≤ xi + xi+1 + · · ·+ xak+1−1 ≤ k
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(with the convention that ad+1 = i). Moreover, the definitions of Ii and k imply
that k = rij , showing that eB satisfies all the inequalities that describe ΓM . It
follows that B is also a basis of M , as desired. �

It follows that positroid polytopes are closed under taking faces.

Corollary 5.7. Every face of a positroid polytope is a positroid polytope.

Proof. Assume ΓM is a positroid polytope, and fix a description of it by inequalities
as in Proposition 5.6. Any face of ΓM is then obtained by intersecting ΓM with
hyperplanes of the form

∑
�∈[i,j] x� = aij . But this is equivalent to intersecting it

with the halfspaces
∑

�∈[j+1,i−1] x� ≤ d − aij , so the result follows by Proposition

5.6. �

6. Matroidal properties of positroids from plabic graphs

As shown in [Pos, Section 11], every perfectly orientable plabic graph gives rise
to a positroid as follows.

Proposition 6.1. Let G be a plabic graph of type (d, n). Then we have a positroid
MG on [n] whose bases are precisely

{IO | O is a perfect orientation of G},
where IO is the set of sources of O.

Moreover, every positroid can be realized in this way, using the construction
described in Definition 4.10. (One perfect orientation of G(D) may be obtained by
orienting each horizontal edge in Figure 3 west, each vertical edge south, and each
diagonal edge southwest.)

There is another way to read from G the bases of MG, which follows from
Proposition 6.1 and [Tal08, Theorem 1.1]. To state this result, we need to define
the notion of a flow in G. For J a set of boundary vertices with |J | = |IO|, a
flow from IO to J is a collection of self-avoiding walks and self-avoiding cycles, all
pairwise vertex-disjoint, such that the sources of these walks are IO − (IO ∩ J) and
the destinations are J − (IO ∩ J).

Proposition 6.2. Let G be a plabic graph of type (d, n). Choose a perfect orien-
tation O of G. Then the bases of the positroid MG are precisely

{I | there exists a flow from IO to I}.

Not only can we read bases from the plabic graph, we can also read basis
exchanges. The backwards direction of Proposition 6.3 below was observed in
[PSW09, Section 5].

Proposition 6.3. Consider a positroid M which is encoded by the perfectly ori-
entable plabic graph G. Consider a perfect orientation O of G and let I = IO.
Then there is a basis exchange between I and J = I − {i} ∪ {j} if and only if there
is a directed path P in O from the boundary vertex i to the boundary vertex j.

Proof. Suppose that P is a directed path in O from i to j. If we modify O by
reversing all edges along P we obtain another perfect orientation O′, whose source
set is J = I − {i} ∪ {j}. It follows from Proposition 6.1 that J is also a basis of M
and hence there is a basis exchange between I and J that swaps i and j.
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Conversely, let us suppose that there is a basis exchange between I and J =
I − {i} ∪ {j}. Then by Proposition 6.1 there is a perfect orientation O′ of G such
that IO′ = J . Comparing O′ to O, it is clear that the set of edges where the perfect
orientations differ is a subgraph H ′ of G such that all vertices have degree 2 (except
possibly at the boundary); see e.g. [PSW09, Lemma 4.5]. More specifically, H is
a disjoint union of some closed cycles C1, . . . , Cl together with a path P between
vertices i and j, and O′ is obtained from O by reversing all edges in H. It follows
from the definition of perfect orientation that P must be a directed path in both
O and O′. �

(a) A perfect orientation.

1

2

3

4

5

7

6

8

9

10

(b) A flow from the
set {2, 3, 6, 8} to the
set {6, 7, 8, 10}.

(c) A directed path
from 3 to 9.

Figure 5. A perfect orientation, a flow, and a directed path in a
plabic graph.

Example 6.4. Figure 5a shows the plabic graph G given in Figure 4b (rearranged
without changing the combinatorial type), together with a perfect orientation O
of its edges. The corresponding source set IO = {2, 3, 6, 8} is then a basis of the
corresponding positroid M = M(G). Figure 5b depicts a flow from IO to the set
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I = {6, 7, 8, 10}, which implies that I is a basis of M . The directed path in O from
3 to 9 highlighted in Figure 5c shows that the set IO − {3} ∪ {9} is a basis of M .
Finally, since there is no directed path in O from 2 to 4, the set IO − {2} ∪ {4} is
not a basis of M . ♦

7. Positroids, connected positroids, and non-crossing partitions

In this section we begin to illustrate the role that non-crossing partitions play in
the theory of positroids. More specifically, Theorem 7.6 shows that the connected
components of a positroid form a non-crossing partition of [n]. Conversely, it also
says that positroids on [n] can be built out of connected positroids by first choosing
a non-crossing partition on [n], and then putting the structure of a connected
positroid on each of the blocks of the partition.

Definition 7.1. A matroid which cannot be written as the direct sum (see Defi-
nition 2.3) of two non-empty matroids is called connected.

Proposition 7.2 ([Oxl92]). Let M be a matroid on E. For two elements a, b ∈ E,
we set a ∼ b whenever there are bases B1, B2 of M such that B2 = B1 − {a} ∪ {b}.
The relation ∼ is an equivalence relation, and the equivalence classes are precisely
the connected components of M .

Proof. It is more customary to define a ∼ b if a, b ∈ C for some circuit C. It
is known that this is an equivalence relation whose equivalence classes are the
connected components of M [Oxl92, Chapter 4.1]. We now verify that these two
definitions are equivalent:

If B1 and B2 are bases of M and B2 = B1 − {a} ∪ {b}, then there is a unique
circuit C ⊂ B1 ∪ {b}, called the fundamental circuit of B with respect to b. It has
the property that a, b ∈ C. Conversely, if a, b are contained in a circuit C, let D be
a basis of M/C. Then B2 := D ∪ C − {a} and B1 := D ∪ C − {b} are bases of M
such that B2 = B1 − {a} ∪ {b}. �

Lemma 7.3. Let M be a positroid on E, and write it as a direct sum of connected
matroids M = M1 ⊕ · · · ⊕Ml. Then each Mi is a positroid.

Proof. This holds because each Mi is the restriction of M to some subset of E, and
restrictions of positroids are positroids (Proposition 3.5). �

Proposition 7.4. Suppose that M is a positroid on [n] which is the direct sum
M1 ⊕M2 of two connected positroids M1 and M2 on ground sets E1 and E2. Then
E1 and E2 are cyclic intervals of [n].

Proof. We propose two different arguments: one in terms of perfect orientations,
and one in terms of matroid polytopes.

1. (Perfect orientations) Suppose that E1 and E2 are not cyclic intervals. Then
there exist positive integers 1 ≤ i < j < k < l ≤ n such that i, k ∈ E1 and
j, l ∈ E2. By Proposition 7.2, there exist bases B1 and B′

1 of M1 such that i ∈ B1

and B′
1 = B1 − {i} ∪ {k}, and there exist bases B2 and B′

2 of M2 such that j ∈ B2

and B′
2 = B2−{j}∪{l}. Then B = B1∪B2 is a basis of M which contains i and j.

Moreover, B admits a basis exchange which replaces i with k, and a basis exchange
which replaces j with l.
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Therefore by Proposition 6.1 there exists a perfect orientation O of a plabic
graph for M whose set IO of sources contains i and j. Also, by Proposition 6.3, O
has a directed path P1 from i to k, and a directed path P2 from j to l. Because
i < j < k < l, these directed paths must intersect at some internal vertex v. But
now it is clear that O also contains a directed path P3 from i to l (and from j
to k): P3 is obtained by following P1 from i to v, and then following P2 from v
to l. Therefore M has a basis exchange which switches i and l, contradicting our
assumption that i and l lie in different connected components of M .

2. (Matroid polytopes) The matroid polytope ΓM satisfies the equality

(4)
∑
e∈E1

xe = rM (E1).

Since the polytope is cut out by the “cyclic” equalities and inequalities of Proposi-
tion 5.5, (4) must be a linear combination of cyclic equalities satisfied by ΓM , i.e.,
equalities of the form

∑
e∈I xe = rM (I) for cyclic intervals I.

If E1 is not a cyclic interval, then we need at least two cyclic equalities different
from

∑
e∈[n] xi = r(M) to obtain (4). Therefore ΓM satisfies at least three linearly

independent equations, and dimΓM ≤ n − 3. This contradicts the fact [BGW03]
that dimΓM = n− c, where c is the number of connected components of M . �
Definition 7.5. Let S be a partition [n] = S1�· · ·�St of [n] into pairwise disjoint
non-empty subsets. We say that S is a non-crossing partition if there are no a, b, c, d
in cyclic order such that a, c ∈ Si and b, d ∈ Sj for some i �= j. Equivalently, place
the numbers 1, 2, . . . , n on n vertices around a circle in clockwise order, and then for
each Si, draw a polygon on the corresponding vertices. If no two of these polygons
intersect, then S is a non-crossing partition of [n].

Let NCn be the set of non-crossing partitions of [n].

Theorem 7.6. Let M be a positroid on [n] and let S1, S2, . . . , St be the ground
sets of the connected components of M . Then ΠM = {S1, . . . , St} is a non-crossing
partition of [n], called the non-crossing partition of M . Conversely, if S1, S2,
. . . , St form a non-crossing partition of [n] and M1, M2, . . . , Mt are connected
positroids on S1, S2, . . . , St, respectively, then M1 ⊕ · · · ⊕Mt is a positroid.

Proof. To prove the first statement of the theorem, let us suppose that S1, S2, . . . ,
St do not form a non-crossing partition of [n]. Then we can find two parts Sa and
Sb and 1 ≤ i < j < k < l ≤ n such that i, k ∈ Sa and j, l ∈ Sb. But then the
restriction of M to Sa ∪ Sb is the direct sum of two connected positroids where Sa

and Sb are not cyclic intervals. This contradicts Proposition 7.4.
We prove the second statement of the theorem by induction on t, the number

of parts in the non-crossing partition. Since S1, . . . , St is a non-crossing partition,
we can assume that one of the parts, say St, is a cyclic interval in [n]. Then S1,
. . . , St−1 is a non-crossing partition on [n] − St. By the inductive hypothesis,
M ′ = M1⊕· · ·⊕Mt−1 is a positroid on [n]−St. But now M ′ and Mt are positroids
on [n]− St and St, which are cyclic intervals of [n]. Therefore by Proposition 3.4,
M = M ′ ⊕Mt is a positroid. �

As remarked earlier, the first half of Theorem 7.6 was also stated without proof by
Oh, Postnikov, and Speyer in [OPS], and by Ford in [For13]. The following results,
describing direct sums and connectivity in terms of decorated permutations, are
also anticipated in [OPS].



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

POSITROIDS AND NON-CROSSING PARTITIONS 353

Definition 7.7. Suppose S1 and S2 are disjoint sets. If π1 is a decorated permu-
tation of S1 and π2 is a decorated permutation of S2, the direct sum π1 ⊕ π2 is the
decorated permutation of the set S1 � S2 such that π|S1

= π1 and π|S2
= π2.

Proposition 7.8. Let M1, . . . ,Mt be positroids on the ground sets S1, . . . , St, re-
spectively, and suppose {S1, . . . , St} is a non-crossing partition of [n]. Let πi be the
decorated permutation of Si associated to Mi, for i = 1, . . . , t. Then the decorated
permutation associated to the positroid M1⊕· · ·⊕Mt is the direct sum π1⊕· · ·⊕πt.

Proof. By induction, it is enough to prove the result when t = 2. For this pur-
pose, suppose M1 and M2 are positroids on disjoint cyclic intervals [i, j − 1] and
[j, i − 1] of [n], respectively. Denote by π1 and π2 their corresponding decorated
permutations. Let (Ii, Ii+1, . . . , Ij−1) be the Grassmann necklace associated to M1,
and let (Jj , Jj+1, . . . , Ji−1) be the Grassmann necklace associated to M2. Recall
that the bases of M are the disjoint unions of a basis of M1 with a basis of M2.
If l ∈ [i, j − 1], then the lexicographically minimal basis of M with respect to the
order <l of [n] is Il � Jj . Similarly, if l ∈ [i, j − 1], the lexicographically minimal
basis of M with respect to <l is Ii � Jl. It follows that the decorated permutation
associated to M is π1 ⊕ π2. �

Corollary 7.9. Let M be a positroid on [n], and let π be is its corresponding
decorated permutation. Then the non-crossing partition ΠM associated to M is the
finest non-crossing partition of [n] such that for any i ∈ [n], the numbers i and π(i)
are in the same block of ΠM .

Proof. Let {S1, . . . , St} be the finest non-crossing partition satisfying the described
condition. Then for any i = 1, . . . , t, the decorated permutation π restricts to a
decorated permutation of Si, which corresponds to a positroid Mi on Si. Since π
decomposes as π = π|S1

⊕· · ·⊕π|St
, by Proposition 7.8 we have M = M1⊕· · ·⊕Mt.

Moreover, each of the positroids Mi is connected, since its decorated permutation
πi cannot be decomposed into the direct sum of smaller decorated permutations.
The matroids M1, . . . ,Mt are then the connected components of M , and therefore
ΠM = {S1, . . . , St}. �

Note that if we represent a decorated permutation of [n] by means of its “chord
diagram” (see Figure 6), Corollary 7.9 says that the blocks of its corresponding
non-crossing partition are the connected components of the diagram.

As a corollary, we obtain a bijection between connected positroids on [n] and an
interesting class of permutations of [n].

Definition 7.10 ([Cal04]). A stabilized-interval-free (SIF) permutation π of [n] is
a permutation which does not stabilize any proper interval of [n]; that is, π(I) �= I
for all intervals I � [n].

Corollary 7.11. For n ≥ 2, the number of connected positroids on [n] equals the
number of SIF permutations on [n].

Proof. It follows from Corollary 7.9 that a positroid M is connected if and only
if its corresponding decorated permutation π does not stabilize any proper cyclic
interval of [n]. But π stabilizes a cyclic interval [i, j − 1] if and only if it stabilizes
its complement [j, i− 1]. Since at least one of these two cyclic intervals is a regular
(non-cyclic) interval of [n], we have that M is connected if and only if π is SIF. �
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Figure 6. The chord diagram of a decorated permutation of [10]
and its corresponding non-crossing partition.

8. A complementary view on positroids and non-crossing partitions

We now give a complementary description of the non-crossing partition of a
positroid, as defined by Theorem 7.6. To do that we need the notion of Kreweras
complementation.

Definition 8.1. Let Π be a non-crossing partition of [n]. Consider nodes 1, 1′, 2, 2′,
. . . , n, n′ in that order around a circle, and draw the partition Π on the labels
1, 2, . . . , n. The Kreweras complement K(Π) is the coarsest (non-crossing) partition
of [n] such that when we regard it as a partition K(Π)′ of 1′, 2′, . . . , n′, the partition
Π ∪K(Π)′ of 1, 1′, 2, 2′, . . . , n, n′ is non-crossing.

Figure 7 shows an example of Kreweras complementation.
Let M be a rank d positroid on [n] and consider its matroid polytope ΓM in

Rn. Instead of the usual coordinates x1, . . . , xn, consider the system of coordinates
y1, . . . , yn given by

yi = x1 + · · ·+ xi (1 ≤ i ≤ n).

Recall that by Proposition 5.6, the inequality description of ΓM has the form

yn = d, yj − yi ≤ rij for i �= j,

where rij = rM ([i, j]). For i, j ∈ [n], define

i ∼∗ j if and only if yj − yi is constant for y ∈ ΓM .

This clearly defines an equivalence relation ∼∗ on [n]. Let Π∗
M be the partition of

[n] into equivalence classes of ∼∗

Theorem 8.2. The partition Π∗
M is the Kreweras complement of the non-crossing

partition ΠM of M . Consequently, it is also non-crossing.

Proof. First we prove that K(ΠM ) is a refinement of Π∗
M . Consider a block S of

K(ΠM ) and two cyclically consecutive elements i < j in S. Since ΠM ∪K(ΠM )′ is
non-crossing in 1, 1′, . . . , n, n′, the cyclic interval [i + 1, j] of [n] is a disjoint union
of blocks S1, . . . , Ss of ΠM , which are themselves connected components of M . If
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Figure 7. The Kreweras complement of the (light) partition
{{1, 9, 12, 15}, {2, 5, 6}, {3}, {4}, {7, 8}, {10}, {11}, {13, 14}, {16}} is
{{1, 6, 8}, {2, 3, 4}, {5}, {7}, {9, 10, 11}, {12, 14}, {13}, {15, 16}}, shown
in dark.

1 ≤ i < j in cyclic order, we have that

yj − yi =
∑

a∈[i+1,j]

xa =
s∑

r=1

∑
a∈Sr

xa =
s∑

r=1

r(Sr)

is constant in ΓM , and therefore i ∼∗ j. A similar computation holds if i < 1 ≤ j.
It follows that K(ΠM ) is a refinement of Π∗

M .
Now assume that i ∼∗ j but i and j are not in the same block ofK(ΠM ). Looking

at the non-crossing partition ΠM ∪K(ΠM )′, this means that the edge i′j′ (which is
not in K(ΠM )) must cross an edge kl of ΠM . Assume k ∈ [i+1, j] and l /∈ [i+1, j].
Now, since k ∼ l, we can find bases B and B′ of M with B′ = B − {k} ∪ {l}. But
then

∑
a∈[i+1,j] xa is not constant on ΓM . More specifically, the value it takes on

the vertex eB is 1 more than the value it takes on the vertex eB′ . This contradicts
the fact that i ∼∗ j. �

9. Positroid polytopes and non-crossing partitions

Having explained the role that non-crossing partitions play in the connectivity
of positroids, we use that knowledge to show that the face poset of a positroid
polytope lives inside the poset of weighted non-crossing partitions.

Definition 9.1. A weighted non-crossing partition Sw of [n] is a non-crossing
partition S of [n], say [n] = S1 � · · · � St, together with a weight vector w =
(w1, . . . , wt) ∈ (Z≥0)

t of integer weights w1 = w(S1), . . . , wt = w(St) with 0 ≤
wi ≤ |Si| for i = 1, . . . , t. The weight of the partition Sw is w1 + · · ·+ wt.

The set NCn of non-crossing partitions of [n] is partially ordered by refinement;
this poset has many interesting properties and connections to several fields of math-
ematics. We extend that order to the context of weighted non-crossing partitions.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

356 FEDERICO ARDILA, FELIPE RINCÓN, AND LAUREN WILLIAMS

Definition 9.2. Let NCd
n be the poset of non-crossing partitions of [n] of weight

d, where the cover relation is given by Sw � T v if
• T = {T1, . . . , Tt} and S = {T1, . . . , Th−1, A, Th − A, Th+1, . . . , Tt} for some index
1 ≤ h ≤ t and some proper subset ∅ � A � Th, and
• v(Th) = w(A) + w(Th −A) and v(Tj) = w(Tj) for all j �= h.

Let NCd
n ∪ {0̂} be this poset with an additional minimum element 0̂.

The poset NCd
n is ranked of height n. It has a unique maximal element 1̂

corresponding to the trivial partition of [n] into one part of weight d.
Readers familiar with the poset Πw

n of weighted partitions defined by Dotsenko
and Khorsohkin [DK07] and further studied by González D’León and Wachs
[GDW13] may notice the relationship between these two posets. The subposet
of Πw

n consisting of the non-crossing partitions of weight d is almost equal to NCd
n;

the only difference is that 0 ≤ w(Si) ≤ |Si|−1 in Πw
n and 0 ≤ w(Si) ≤ |Si| in NCd

n.
For our purposes we only need to allow w(Si) = |Si| for |Si| = 1, but this small
distinction is important; see Remark 9.4.

Theorem 9.3. If M is a rank d positroid on [n], then the face poset of the matroid

polytope ΓM is an induced subposet of NCd
n ∪ {0̂}.

Proof. By Corollary 5.7, any non-empty face F of the positroid polytope ΓM is
itself a positroid polytope, say F = ΓN . Write N = N1 ⊕ · · · ⊕Nc as a direct sum
of its connected components. By Theorem 7.6, the partition ΠF = {N1, . . . , Nc}
of [n] is non-crossing. Assign weights w(Ni) = rN (Ni) for 1 ≤ i ≤ c to the blocks
of this partition. Let Πw

F be the resulting weighted non-crossing partition. Since
rN (N1) + · · ·+ rN (Nc) = r(N) = r(M) = d we have that Πw

F ∈ NCd
n. (If F is the

empty face let Πw
F = 0̂.) We claim that

F 
→ Πw
F

is the desired embedding.
Figure 8 shows the positroid polytope ΓM for the positroid M whose bases are

{12, 13, 14, 23, 24}. It is a square pyramid. It also shows the face poset of ΓM , with
each face labeled with the corresponding weighted non-crossing partition of [4].

First we show that this mapping is one-to-one. Suppose we know Πw
F and we

wish to recover F . Since F is a face of ΓM , it satisfies the same inequalities as
ΓM , and some additional equalities. If F = ΓN , the equalities that it satisfies are∑

i∈Nj
xi = rN (Nj) for j = 1, . . . , c and their linear combinations. But we know

the Njs and the rN (Nj)s from Πw
F , so we can recover F as the intersection of ΓM

with these c hyperplanes.
Now we show that the mapping is order preserving. Assume that F �G are faces

of ΓM ; say F = ΓK and G = ΓL for positroids K and L. Let K = K1⊕· · ·⊕Kc be
the decomposition of K into connected components. Then dimF = n − c implies
dimG = dimF − 1 = n − c − 1. By Proposition 5.3, the decomposition of L into
connected components must then be of the form L = K1 ⊕ · · · ⊕Kh−1 ⊕ (Kh|A)⊕
(Kh/A) ⊕ Kh+1 ⊕ · · · ⊕Kc for some 1 ≤ h ≤ c and some proper subset A ⊂ Kh.
Therefore ΠG � ΠF in NCn. Furthermore, since Kj has the same weight in ΠF

and ΠG for all j �= i and r(K) = r(L) = d, the weight rK(Kh) in ΠF must equal
the sum rL(Kh|A) + rL(Kh/A) of weights in ΠG. Therefore Πw

G �Πw
F in NCd

n.
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Figure 8. The face poset of the square pyramid inside NC2
4 .

Finally, to show that the face poset of ΓM is embedded as an induced subposet of
NCd

n, assume that Πw
G ≤ Πw

F for some faces F and G of ΓM . We need to show that
G ≤ F . Again let F = ΓK and G = ΓL, and let K1, . . . ,Kc be the components
of K. The components of L must be a refinement of the components of K, say

K1
1 ,K

2
1 , . . . ,K

i1
1 , K1

2 ,K
2
2 , . . . ,K

i2
2 , . . ., K1

c ,K
2
c , . . . ,K

ic
c , where

⊔il
j=1 K

j
l = Kl, for

l = 1, . . . , c. Moreover, we have
∑il

j=1 rL(K
j
l ) = rK(Kl). Now, the equalities that

determine the face F as a subset of ΓM are
∑

j∈Kl
xj = rK(Kl) for l = 1, . . . , c. The

face G is cut out of ΓM by the equalities
∑

j∈Ki
l
xj = rL(K

i
l ) for l = 1, . . . , c and

i = 1, . . . , il. These latter inequalities easily imply the inequalities that describe F
in ΓM , so it follows that G ≤ F . �

Remark 9.4. In the correspondence above, the weight of a blockNi in a non-crossing
partition Πw

F is w(Ni) = rN (Ni). If we had rN (Ni) = |Ni|, then Ni would consist
solely of coloops. Since Ni is connected, we must have |Ni| ∈ {0, 1}. Singletons may
indeed have weight equal to 0 or 1. This is the only reason why, in NCd

n, we need
to allow a block of size k to have weight k, instead of following [DK07,GDW13].

As mentioned earlier, the poset NCd
n ∪{0̂} is ranked of height n. The face poset

F (ΓM ) of the polytope ΓM of a connected positroidM of rank d on [n] is also ranked

of height n. For each such positroid M , the order complex Δ(F (ΓM ) − {0̂, 1̂})
can be identified with the barycentric subdivision of the polytope ΓM , so it is
homeomorphic to an (n − 2)-sphere. The interaction of these different (n − 2)-

spheres inside the order complex Δ(NCd
n − {1̂}) is the subject of an upcoming

project.
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10. Enumeration of connected positroids

In this section we use Theorem 7.6, together with a result of the third author
[Wil05], to enumerate connected positroids.

Definition 10.1. Let p(n) be the number of positroids on [n] and pc(n) be the
number of connected positroids on [n]. Let

P (x) = 1 +
∑
n≥1

p(n)xn

and

Pc(x) = 1 +
∑
n≥1

pc(n)x
n.

Many combinatorial objects (such as graphs or matroids) on a set [n] decompose
uniquely into connected components S1, . . . , Sk, where the partition [n] = S1 �
· · · �Sk has no additional structure. In that case, the Exponential Formula [Sta99,
Theorem 5.1.3] tells us that the exponential generating functions Et(x) and Ec(x)
for the total number of objects and the total number of connected objects are
related by the formula Ec(x) = logEt(x).

In our situation, where the connected components of a positroid form a non-
crossing partition, we need the following “non-crossing” analog of the Exponential
Formula:

Theorem 10.2 ([Bei85], [Spe94]). Let K be a field. Given a function f : Z>0 → K
define a new function h : Z>0 → K by

(5) h(n) =
∑

{S1,...,Sk}∈NCn

f(#S1)f(#S2) · · · f(#Sk),

where we are summing over all the non-crossing partitions of [n]. Define F (x) =
1 +

∑
n≥1 f(n)x

n and H(x) = 1 +
∑

n≥1 h(n)x
n. Then

xH(x) =

(
x

F (x)

)〈−1〉
,

where G(x)〈−1〉 denotes the compositional inverse of G(x).

Corollary 10.3. The generating functions for positroids and connected positroids
satisfy

xP (x) =

(
x

Pc(x)

)〈−1〉
.

Proof. Theorem 7.6 implies that

p(n) =
∑

{S1,...,Sk}∈NCn

pc(#S1)pc(#S2) · · · pc(#Sk),

and Theorem 10.2 then gives the desired result. �

Enumeration of general positroids has been previously studied by the third au-
thor in [Wil05].



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

POSITROIDS AND NON-CROSSING PARTITIONS 359

Theorem 10.4. We have

P (x) =
∑
k≥0

k!
xk

(1− x)k+1
, p(n) =

n∑
k=0

n!

k!
, lim

n→∞

p(n)

n!
= e.

Proof. In [Wil05], Williams gave a finer enumeration of positroids in terms of the
size of the ground set, the rank, and the dimension of the positroid cell. The first
equality follows from [Wil05, Prop. 5.11] by setting q = y = 1. This easily implies
the second equality, which implies the third. �

The following formula also follows easily from the above.

Proposition 10.5 ([Pos, Prop. 23.2]). The exponential generating function for
p(n) is

1 +
∑
n≥1

p(n)
xn

n!
=

ex

1− x
.

The sequence {p(n)}n≥1 is entry A000522 in Sloane’s Encyclopedia of Integer
Sequences [Slo94]. The first few terms are 2, 5, 16, 65, 326, 1957, 13700, . . . .

Theorem 10.6. The number pc(n) of connected positroids on [n] satisfies

pc(n) =
[xn]P (x)1−n

1− n
,

pc(n) = (n− 1)pc(n− 1) +
n−2∑
j=2

(j − 1)pc(j)pc(n− j) for n ≥ 2, and

lim
n→∞

pc(n)

n!
=

1

e
.

Proof. The first statement follows by applying the Lagrange inversion formula
[Sta99, Theorem 5.4.2] to F (x) = x/Pc(x) and F 〈−1〉(x) = xP (x), which says:

m[xm]
(
F 〈−1〉(x)

)k

= k[x−k]F (x)−m,

m[xm] (xP (x))k = k[x−k]

(
Pc(x)

x

)m

,

m[xm−k]P (x)k = k[xm−k]Pc(x)
m.

It remains to set m = 1 and k = 1− n.
In view of Corollary 7.11, the second statement is derived in [Cal04], and the

third is a consequence of [ST09, Cor. 11]. �

The sequence {pc(n)}n≥1 is, except for the first term, equal to entry A075834
in Sloane’s Encyclopedia of Integer Sequences [Slo94]. The first few terms are
2, 1, 2, 7, 34, 206, 1476, . . . .

We conclude the following.

Theorem 10.7. If p(n) is the number of positroids on [n] and pc(n) is the number
of connected positroids on [n], then

lim
n→∞

pc(n)

p(n)
=

1

e2
≈ 0.1353.

Proof. This is an immediate consequence of Theorems 10.4 and 10.6. �
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This result is somewhat surprising in view of the conjecture that most matroids
are connected:

Conjecture 10.8 (Mayhew, Newman, Welsh, Whittle, [MNWW11]). If m(n) is
the number of matroids on [n] and mc(n) is the number of connected matroids on
[n], then

lim
n→∞

mc(n)

m(n)
= 1.

Theorem 10.7 should not be seen as evidence against Conjecture 10.8. Positroids
possess strong structural properties that are quite specific to them. Furthermore,
they are a relatively small family of matroids: compare the estimate log2 log2 m(n)
∼ n due to Knuth [Knu74] and Bansal, Pendavingh, and van der Pol [BPvdP] with
the estimate p(n) ∼ n! e, which gives log2 log2 p(n) ∼ log2 n.

11. Positroids and free probability

The results of the previous section have an interesting connection with
Voiculescu’s theory of free probability. We give a very brief overview of the aspects
of the theory that are relevant to our discussion; for a more thorough introduction,
we recommend Nica and Speicher’s excellent survey [NS06].

The concept of freeness can be thought of as a “non-commutative analogue” to
the classical notion of independence in probability. The role played by indepen-
dence, moments, cumulants, and partitions in classical probability is now played by
freeness, moments, free cumulants, and non-crossing partitions in free probability,
as we now explain.

Given a real-valued random variable X with probability distribution μ(x), the
moments of X are the expected values of the powers of X: the nth moment is
mn(X) = E(Xn), for n ≥ 1. (We assume for the rest of this discussion that all
moments exist.) The moment generating function

MX(t) = E(etX) =
∑
n≥0

mn(X)
tn

n!

is essentially the same as the Fourier transform of μ. The cumulants of X are the
coefficients of the generating function

logMX(t) =
∑
n≥0

cn(X)
tn

n!
.

The independence of random variables X and Y translates into a linear relation of
cumulants. Since expectation is multiplicative on independent variables, we have
that MX+Y (t) = MX(t)MY (t) when X and Y are independent, so

X,Y independent ⇒ cn(X + Y ) = cn(X) + cn(Y ) for all n ≥ 1.

In the non-commutative setting, our “random variables” are simply elements of
a unital algebra A which is not necessarily commutative. Our “expectation” E is
just a linear function E : A → C with E(1) = 1. Moments are defined in analogy
with the classical case. We say that random variables X and Y are free if, for any
polynomials p1, q1, . . . , pk, qk,

E(pi(X)) = E(qj(Y )) = 0 for all i, j ⇒ E(p1(X)q1(Y ) · · · pk(X)qk(Y )) = 0.
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Again, the freeness of X and Y manifests linearly in terms of the free cumulants,
which are the numbers k1, k2, . . . such that

(6) mn =
∑

{S1,...,Sk}∈NCn

k#S1
k#S2

· · · k#Sk

for all n. While the formula for the moments of X + Y is quite intricate, the free
cumulants are related beautifully by

X,Y free ⇒ kn(X + Y ) = kn(X) + kn(Y ) for all n ≥ 1.

There is also a remarkable formula for the free cumulants of X · Y [NS06].
With all the necessary background in place, we can now establish a simple con-

nection between free probability and positroids. Let Exp(λ) be an exponential
random variable with rate parameter λ.

Theorem 11.1. The moments of the random variable Y ∼ 1 + Exp(1) are

mn(Y ) = # positroids on [n],

and its free cumulants are

kn(Y ) = # connected positroids on [n].

Proof. Using the fact that MA+B(t) = MA(t)MB(t) for independent random vari-
ables A and B and that MExp(λ) = 1/(1− t

λ ), it follows that the moment generating
function of Y is

MY (t) = M1+Exp(1)(t) = M1(t)MExp(1)(t) = et · 1

1− t
.

Comparing this with Proposition 10.5 gives the first formula. The second fol-
lows by combining Corollary 10.3 with the relation (6) between moments and free
cumulants. �
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