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Abstract

We investigate the line arrangement that results from intersecting
d complete flags in Cn. We give a combinatorial description of the
matroid Tn,d that keeps track of the linear dependence relations among
these lines.

We prove that the bases of the matroid Tn,3 characterize the trian-
gles with holes which can be tiled with unit rhombi. More generally,
we provide evidence for a conjectural connection between the matroid
Tn,d, the triangulations of the product of simplices ∆n−1 ×∆d−1, and
the arrangements of d tropical hyperplanes in tropical (n− 1)-space.

Our work provides a simple and effective criterion to ensure the
vanishing of many Schubert structure constants in the flag manifold,
and a new perspective on Billey and Vakil’s method for computing the
non-vanishing ones.

1 Introduction.

Let E1
• , . . . , E

d
• be d generically chosen complete flags in Cn. We will work

over the field C of complex numbers, although our results hold over any
sufficiently large field. Write

Ek
• = {{0} = Ek

0 ⊂ Ek
1 ⊂ · · · ⊂ Ek

n = Cn},

where Ek
i is a vector space of dimension i. Consider the set En,d of one-

dimensional intersections determined by the flags; that is, all lines of the
form E1

a1
∩ E2

a2
∩ · · · ∩ Ed

ad
.
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The initial goal of this paper is to characterize the line arrangements
Cn which arise in this way from d generically chosen complete flags. We
will then show an unexpected connection between these line arrangements
and an important and ubiquitous family of subdivisions of polytopes: the
triangulations of the product of simplices ∆n−1×∆d−1. These triangulations
appear naturally in studying the geometry of the product of all minors of
a matrix [3], tropical geometry [11], and transportation problems [42]. To
finish, we will illustrate some of the consequences that the combinatorics of
these line arrangements have on the Schubert calculus of the flag manifold.

The results of the paper are roughly divided into four parts as follows.
First of all, Section 2 is devoted to studying the line arrangement determined
by the intersections of a generic arrangement of hyperplanes. This will serve
as a warmup before we investigate generic arrangements of complete flags,
and the results we obtain will be useful in that investigation.

The second part consists of Sections 3, 4 and 5, where we will character-
ize the line arrangements that arise as intersections of a “matroid-generic”
arrangement of d flags in Cn. Section 3 is a short discussion of the combina-
torial setup that we will use to encode these geometric objects. In Section
4, we propose a combinatorial definition of a matroid Tn,d. In Section 5 we
will show that Tn,d is the matroid of the line arrangement of any d flags in
Cn which are generic enough. Finally, we show that these line arrangements
are completely characterized combinatorially: any line arrangement in Cn

whose matroid is Tn,d arises as an intersection of d flags.
The third part establishes a surprising connection between these line

arrangements and an important class of subdivisions of polytopes. The
bases of Tn,3 exactly describe the ways of punching n triangular unit holes
into the equilateral triangle of size n, so that the resulting holey triangle
can be tiled with unit rhombi. A consequence of this is a very explicit
geometric representation of Tn,3. We show these results in Section 6. We
then pursue a higher-dimensional generalization of this result. In Section 7,
we suggest that the fine mixed subdivisions of the Minkowski sum n∆d−1

are an adequate (d − 1)-dimensional generalization of the rhombus tilings
of holey triangles. We give a completely combinatorial description of these
subdivisions. Finally, in Section 8, we prove that each fine mixed subdivision
of the Minkowski sum n∆d−1 (or equivalently, each triangulation of the
product of simplices ∆n−1×∆d−1) gives rise to a basis of Tn,d. We conjecture
that every basis of Tn,d arises in this way. In fact, it may be true that
every basis of Tn,d arises from a regular subdivision or, equivalently, from
an arrangement of d tropical hyperplanes in tropical (n− 1)-space.
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The fourth and last part of the paper, Section 9, presents some of the
consequences of our work in the Schubert calculus of the flag manifold. We
start by recalling Eriksson and Linusson’s permutation arrays, and Billey
and Vakil’s related method for explicitly intersecting Schubert varieties. In
Section 9.1 we show how the geometric representation of the matroid Tn,3

of Section 6 gives us a new perspective on Billey and Vakil’s method for
computing the structure constants cuvw of the cohomology ring of the flag
variety. Finally, Section 9.2 presents a simple and effective criterion for
guaranteeing that many Schubert structure constants are equal to zero.

We conclude with some future directions of research that are suggested
by this project.

2 The lines in a generic hyperplane arrangement.

Before thinking about flags, let us start by studying the slightly easier prob-
lem of understanding the matroid of lines of a generic arrangement of m
hyperplanes in Cn. We will start by presenting, in Proposition 2.1, a combi-
natorial definition of this matroid Hn,m. Theorem 2.2 then shows that this
is, indeed, the right matroid. As it turns out, this warmup exercise will play
an important role in Section 5.

Throughout this section, we will consider a generic central1 hyperplane
arrangement, consisting of m hyperplanes H1, . . . ,Hm in Cn. For each subset
A of [m] = {1, 2, . . . ,m}, let

HA =
⋂
a∈A

Ha.

By genericity,

dim HA =
{

n− |A| if |A| ≤ n,
0 otherwise.

Therefore, the set Ln,m of one-dimensional intersections of the His consists
of the

(
m

n−1

)
lines HA for |A| = n− 1.

There are several “combinatorial” dependence relations among the lines
in Ln,m, as follows. Each t-dimensional intersection HB (where B is an
(n − t)-subset of [m]) contains the lines HA with B ⊆ A. Therefore, in
an independent set HA1 , . . . ,HAk

of Ln,m, we cannot have t + 1 Ais which
contain a fixed (n− t)-set B.

1A hyperplane arrangement is central if all its hyperplanes go through the origin.
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At first sight, it seems intuitively clear that, in a generic hyperplane ar-
rangement, these will be the only dependence relations among the lines in
Ln,m. This is not as obvious as it may seem: let us illustrate a situation
in L4,5 which is surprisingly close to a counterexample to this statement.
For simplicity, we will draw the three-dimensional projective picture. Each
hyperplane in C4 will now look two-dimensional, and the lines in the ar-
rangement L4,5 will look like points. Denote hyperplanes H1, . . . ,H5 simply
by 1, . . . , 5, and an intersection like H124 simply by 124.

In Figure 1, we have started by drawing the triangles T and T ′ with ver-
tices 124, 234, 134 and 125, 235, 135, respectively. The three lines connecting
the pairs (124, 125), (234, 235) and (134, 135), are the lines 12, 23, and 13,
respectively. They intersect at the point 123, so that the triangles T and T ′

are perspective with respect to this point.

234

134

235

125

123

245145

124

345

135

Figure 1: The Desargues configuration in L4,5.

Now Desargues’ theorem applies, and it predicts an unexpected depen-
dence relation. It tells us that the three points of intersection of the cor-
responding sides of T and T ′ are collinear. The lines 14 (which connects
124 and 134) and 15 (which connects 125 and 135) intersect at the point
145. Similarly, 24 and 25 intersect at 245, and 34 and 35 intersect at 345.
Desargues’ theorem says that the points 145, 245, and 345 are collinear.
In principle, this new dependence relation does not seem to be one of our
predicted “combinatorial relations”. Somewhat surprisingly, it is: it simply
states that these three points are on the line 45.

The previous discussion shows that even five generic hyperplanes in C4

give rise to interesting geometric configurations. In this case, we might
consider ourselves fortunate, because the conclusion of Desargues’ theorem
was also a consequence of our combinatorial relations. However, it is not
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unreasonable to think that larger arrangements Ln,m will contain other con-
figurations, which have nontrivial dependence relations that we may not
have predicted.

Having told our readers what they might need to worry about, we now
intend to convince them not to worry about it.

First we show that the combinatorial dependence relations in Ln,m are
consistent, in the sense that they define a matroid. This statement will
follow as a consequence of Theorem 2.2. We now give a different proof,
which sheds light on the combinatorial structure of the matroid.

Proposition 2.1. Let I consist of the collections I of subsets of [m], each
containing n − 1 elements, such that no t + 1 of the sets in I contain an
(n− t)-set. In symbols,

I :=

{
I ⊆

(
[m]

n− 1

)
such that for all S ⊆ I,

∣∣⋂
A∈S

A
∣∣ ≤ n− |S|

}
.

Then I is the collection of independent sets of a matroid Hn,m.

Proof. A circuit of that matroid would be a minimal collection C of s subsets
of [m] of size n− 1, all of which contain one fixed (n− s + 1)-set. It suffices
to verify the circuit axioms:
(C1) No proper subset of a circuit is a circuit.
(C2) If two circuits C1 and C2 have an element x in common, then C1∪C2−x
contains a circuit.

The first axiom is satisfied trivially. Now consider two circuits C1 and
C2 containing a common (n− 1)-set X1. Let

C1 = {X1, . . . , Xa, Y1, . . . , Yb}, C2 = {X1, . . . , Xa, Z1, . . . , Zc},

where the Yis and Zis are all distinct. Write

X =
a⋂

i=1

Xi, Y =
b⋂

i=1

Yi, Z =
c⋂

i=1

Zi.

By definition of C1 and C2 we have that |X ∩ Y | ≥ n − (a + b) + 1 and
|X ∩ Z| ≥ n − (a + c) + 1, and their minimality implies that |X| ≤ n − a.
Therefore

|X ∩ Y ∩ Z| = |X ∩ Y |+ |X ∩ Z| − |(X ∩ Y ) ∪ (X ∩ Z)|
≥ |X ∩ Y |+ |X ∩ Z| − |X|
≥ (n− a− b + 1) + (n− a− c + 1)− (n− a)
= n− a− b− c + 2,
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and hence

|X2 ∩ · · · ∩Xa ∩ Y1 ∩ · · · ∩ Yb ∩ Z1 ∩ · · · ∩ Zc| ≥ n− (a + b + c− 1) + 1.

It follows that C1 ∪ C2 −X1 contains a circuit, as desired.

Now we show that this matroid Hn,m is the one determined by the lines
in a generic hyperplane arrangement.

Theorem 2.2. If a central hyperplane arrangement A = {H1, . . . ,Hm} in
Cn is generic enough, then the matroid of the

(
m

n−1

)
lines HA is isomorphic

to Hn,m.

Proof. We already observed that the one-dimensional intersections of A sat-
isfy all the dependence relations of Hn,m. Now we wish to show that, if A
is generic enough, these are the only relations.

Any hyperplane arrangement can be constructed as follows. Consider
the m coordinate hyperplanes in Cm, numbered J1, . . . , Jm. Pick an n-
dimensional subspace V of Cm, and consider the ((n − 1)-dimensional) ar-
rangement of hyperplanes H1 = J1 ∩ V, . . . ,Hm = Jm ∩ V in V . We will see
that, if V is generic enough in the sense of Dilworth truncations, then the
arrangement {H1, . . . ,Hm} is generic enough for the conclusion of Theorem
2.2 to hold. We now recall this setup.

Theorem 2.3. (Brylawski, Dilworth, Mason, [7, 8, 29]) Let L be a set of
lines in Cr whose corresponding matroid is M . Let V be a subspace of Cr

of codimension k − 1. For each k-flat F spanned by L, let vF = F ∩ V .

1. If V is generic enough, then each vF is a line, and the matroid Dk(M)
of the lines vF does not depend on V .

2. The circuits of Dk(M) are the minimal sets {vF1 , . . . , vFa} such that
rkM (F1∪· · ·∪Fa) ≤ a+k−2.2 This matroid is called the k-th Dilworth
truncation of M .3

2The idea behind this is that, if the span of F1, . . . , Fa has dimension less than a +
k− 1, then, upon intersection with V (which has codimension k− 1), their span will have
dimension less than a.

3The matroid Dk(M) can be defined combinatorially by specifying its circuits in the
same way, even if M is not representable. In fact, when M is representable, the most subtle
aspect of our definition of Dk(M) is the construction of a sufficiently generic subspace V ,
and hence of a geometric realization of Dk(M). This construction was proposed by Mason
[29] and proved correct by Brylawski [7]. They also showed that, if M is not realizable,
then Dk(M) is not realizable either.
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This is precisely the setup that we need. Let L = {1, . . . ,m} be the
coordinate axes of Cm, labelled so that coordinate hyperplane Ji is normal
to axis i. These m lines are a realization of the free matroid Mm on m
elements.

Now consider the (m − n + 1)-th Dilworth truncation Dm−n+1(Mm)
of Mm, obtained by intersecting our configuration with an n-dimensional
subspace V of Cm, which is generic enough for Theorem 2.3 to apply. For
each (m − n + 1)-subset T of L = {1, . . . ,m}, we get an element of the
matroid of the form

vT = (span T ) ∩ V =
(⋂

i/∈T

Ji

)
∩ V =

⋂
i/∈T

(Ji ∩ V ) =
⋂
i/∈T

Hi = H[m]−T ,

where, as before, Hi = Ji ∩ V is a hyperplane in V . Since
∣∣[m] − T

∣∣ =
n − 1, this vT is precisely one of the lines in the arrangement Ln,m of one-
dimensional intersections of {H1, . . . ,Hm}. In Theorem 2.3, we have a com-
binatorial description for the matroid Dm−n+1(Mm) of the vT s. It remains
to check that this matches our description of Hn,m.

This verification is straightforward. In Dm−n+1(Mm), the collection
{vT1 , . . . , vTa} is a circuit if it is a minimal set such that the following equiv-
alent conditions hold:

rkMm(T1 ∪ · · · ∪ Ta) ≤ a + (m− n + 1)− 2,

|T1 ∪ · · · ∪ Ta| ≤ m− (n− a + 1),
|([m]− T1) ∩ · · · ∩ ([m]− Ta)| ≥ n− a + 1.

This is equivalent to {[m]− T1, . . . , [m]− Ta} being a circuit of the matroid
Hn,m, which is precisely what we wanted to show. This completes the proof
of Theorem 2.2.

Corollary 2.4. The matroid Hn,m is isomorphic to the (m − n + 1)-th
Dilworth truncation of the free matroid Mm.

Proof. This is an immediate consequence of our proof of Theorem 2.2.

Comment. Given a hyperplane arrangement A, Manin and Schechtman
[27] and Bayer and Brandt [5] studied the space U(A) of arrangements of
hyperplanes which are in the most general position possible, while staying
parallel to the hyperplanes of A. They showed that this space is itself the
complement of a central hyperplane arrangement B(A), called the discrim-
inantal arrangement of A.
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Their construction is closely related to ours, as observed by Falk [14]
and Bayer and Brandt [5]. Let H and H∗ be dual hyperplane arrangements
in the matroid sense. Then the arrangement of lines determined by H is
linearly isomorphic to the arrangement of lines normal to the discriminantal
arrangement of H∗. In particular, Theorem 2.2 follows from this circle of
ideas; see [2, 9, 14, 27].

3 From lines in a flag arrangement to lattice points
in a simplex.

Having understood the matroid of lines in a generic hyperplane arrange-
ment, we proceed to study the case of complete flags. In the following three
sections, we will describe the matroid of lines of a generic arrangement of d
complete flags in Cn. We start, in this section, with a short discussion of the
combinatorial setup that we will use to encode these geometric objects. We
then propose, in Section 4, a combinatorial definition of the matroid Tn,d.
Finally, we will show in Section 5 that this is, indeed, the matroid we are
looking for.

Let E1
• , . . . , E

d
• be d generically chosen complete flags in Cn. Write

Ek
• = {{0} = Ek

0 ⊂ Ek
1 ⊂ · · · ⊂ Ek

n = Cn},

where Ek
i is a vector space of dimension i.

These d flags determine a line arrangement En,d in Cn as follows. Look
at all the possible intersections of the subspaces under consideration; they
are of the form Ea1,...,ad

= E1
a1
∩ E2

a2
∩ · · · ∩ Ed

ad
. We are interested in

the one-dimensional intersections. Since the Ek
• s were chosen generically,

Ea1,...,ad
has codimension (n− a1) + . . . + (n− ad) (or n if this sum exceeds

n). Therefore, the one-dimensional intersections are the lines Ea1,...,ad
for

a1 + · · ·+ ad = (d− 1)n + 1. There are
(
n+d−2

d−1

)
such lines, corresponding to

the ways of writing n−1 as a sum of d nonnegative integers n−a1, . . . , n−ad.
Let Tn,d be the set of lattice points in the following (d− 1)-dimensional

simplex in Rd:

{ (x1, . . . , xd) ∈ Rd | x1 + · · ·+ xd = n− 1 and xi ≥ 0 for all i}.

The d vertices of this simplex are (n− 1, 0, 0, . . . , 0), (0, n− 1, 0, . . . , 0), . . . ,
(0, 0, . . . , n − 1). For example, Tn,3 is simply a triangular array of dots of
size n; that is, with n dots on each side. We will call Tn,d the (d−1)-simplex
of size n. Each edge contains n dots.
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It will be convenient to identify the line Ea1,...,ad
(where a1 + · · ·+ ad =

(d − 1)n + 1 and 1 ≤ ai ≤ n) with the vector (n − a1, . . . , n − ad) of codi-
mensions. This clearly gives us a one-to-one correspondence between the set
Tn,d and the lines in our line arrangement En,d.

F

G

E 300

210 201

120 111 102

012 003030 021

144

414

432

441

342

243

333

423

324

234

Figure 2: The lines determined by three flags in C4, and the array T4,3.

We illustrate this correspondence for d = 3 and n = 4 in Figure 2. This
picture is easier to visualize in real projective 3-space. Now each one of the
flags E•, F•, and G• is represented by a point in a line in a plane. The lines
in our line arrangement are now the 10 intersection points we see in the
picture.

We are interested in the dependence relations among the lines in the
line arrangement En,d. As in the case of hyperplane arrangements, there
are several combinatorial relations which arise as follows. Consider a k-
dimensional subspace Eb1,...,bd

with b1 + · · ·+ bd = (d− 1)n + k. Every line
of the form Ea1,...,ad

with ai ≤ bi is in this subspace, so no k + 1 of them
can be independent. The corresponding points (n− a1, . . . , n− ad) are the
lattice points inside a parallel translate of Tk,d, the simplex of size k, in Tn,d.
In other words, in a set of independent lines of our arrangement, we cannot
have more than k lines whose corresponding dots are in a simplex of size k
in Tn,d.

For example, no four of the lines E144, E234, E243, E324, E333, and E342

are independent, because they are in the 3-dimensional hyperplane E344.
The dots corresponding to these six lines form the upper T3,3 found in our
T4,3 drawn in Figure 2.

In principle, there could be other hidden dependence relations among
the lines in En,d. The goal of the next two sections is to show that this is
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not the case. In fact, these combinatorial relations are the only dependence
relations of the line arrangement associated to d generically chosen flags in
Cn.

We will proceed as in the case of hyperplane arrangements. We will
start by showing, in Section 4, that the combinatorial relations do give rise
to a matroid Tn,d. In Section 5, we will then show that this is, indeed, the
matroid we are looking for.

4 A matroid on the lattice points in a regular
simplex.

The combinatorial dependence relations defined in Section 3 do in fact de-
termine a matroid. This will follow as a consequence of Theorem 5.1. As we
did in Section 2 for hyperplanes, we will now give an alternative combinato-
rial proof of this statement, which is helpful in understanding the structure
of the matroid we are interested in.

Theorem 4.1. Let In,d be the collection of subsets I of Tn,d such that every
parallel translate of Tk,d contains at most k points of I, for every k ≤ n.

Then In,d is the collection of independent sets of a matroid Tn,d on the
ground set Tn,d.

We will call a parallel translate of Tk,d a simplex of size k. As an example,
Tn,3 is a triangular array of dots of size n. The collection In,3 consists of
those subsets I of the array Tn,3 such that no triangle of size k contains
more than k points of I. Figure 3 shows the array T4,3, and a set in I4,3.

Figure 3: The array T4,3 and a set in I4,3.

Proof of Theorem 4.1. We need to verify the three axioms for the collection
of independent sets of a matroid:
(I1) The empty set is in In,d.
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(I2) If I is in In,d and I ′ ⊆ I, then I ′ is also in In,d.
(I3) If I and J are in In,d and |I| < |J |, then there is an element e in J − I
such that I ∪ e is in In,d.

The first two axioms are satisfied trivially; let us focus on the third one.
Proceed by contradiction. Let J − I = {e1, . . . , em}. We know that every
simplex of size a contains at most a points of I. When we try to add eh to
I while preserving this condition, only one thing can stop us: a simplex Th

of size th which already contains th points of I, and also contains eh.
Say that a simplex of size t is I-saturated if it contains exactly t points of

I. We have found I-saturated simplices T1, . . . , Tm which contain e1, . . . , em,
respectively.

Now we use the following lemma, which we will prove in a moment.

Lemma 4.2. Let T and T ′ be two I-saturated simplices, and let T ∨ T ′ be
the smallest simplex containing both of them. Suppose that T and T ′ are
either overlapping or neighboring; that is, either

1. T ∩ T ′ 6= ∅, or

2. T ∩ T ′ = ∅ and size(T ∨ T ′) = size(T ) + size(T ′).

Then the simplices T ∩ T ′ and T ∨ T ′ are also I-saturated.

If two of our I-saturated simplices Tg and Th are different and have a
non-empty intersection, we can replace them both by Tg ∨ Th. By Lemma
4.2, this is also an I-saturated simplex, and it still contains eg and eh. We
can continue in this way, until we obtain I-saturated simplices T ′

1, . . . , T
′
m

containing e1, . . . , em which are pairwise disjoint (though possibly repeated).
Let U1, . . . , Ul be this collection of I-saturated simplices, now listed with-

out repetitions. Let Ur have size sr, and say it contains ir elements of I−J ,
jr elements of J − I, and hr elements of I ∩ J .

We know that Ur is I-saturated, so sr = ir + hr. We also know that J is
in In,d, so sr ≥ jr + hr. Therefore, ir ≥ jr for each r.

Now, the Urs are pairwise disjoint, so
∑

ir ≤ |I−J | and
∑

jr ≤ |J − I|.
But in fact, we know that every element of J−I is in some Ur, so we actually
have the equality

∑
jr = |J − I|. Therefore we have

|J − I| =
∑

jr ≤
∑

ir ≤ |I − J |.

This contradicts our assumption that |I| < |J |, and Theorem 4.1 follows.
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Proof of Lemma 4.2. First we show that size(T ∩ T ′) + size(T ∨ T ′) =
size(T ) + size(T ′). This is trivial in the second case of the lemma, so we
assume that T ∩ T ′ 6= ∅.

Each simplex is a parallel translate of some Tk,d; its vertices are given
by (a1 + k − 1, a2, . . . , ad), . . . , (a1, a2, . . . , ad + k − 1) for some a1, . . . , ad

such that
∑

ai = n − k. We denote this simplex by Ta1,...,ad
; its size is

k = n−
∑

ai provided
∑

ai ≤ n. It consists of the points (x1, . . . , xd) with
xi ≥ ai for each i, and

∑
xi = n− 1. Therefore, Ta1,...,ad

⊆ TA1,...,Ad
if and

only if ai ≥ Ai for each i.
It follows that if T = Ta1,...,ad

and T ′ = Ta′
1,...,a′

d
are two overlapping

simplices, then we have:

T ∩ T ′ = Tmax(a1,a′
1),...,max(ad,a′

d)

T ∨ T ′ = Tmin(a1,a′
1),...,min(ad,a′

d).

So size(T ∩ T ′) + size(T ∨ T ′) = (n −
∑

max(ai, a
′
i)) + (n −

∑
min(ai, a

′
i))

and size(T ) + size(T ′) = (n −
∑

ai) + (n −
∑

a′i). These are equal since
max(a, a′) + min(a, a′) = a + a′ for any a, a′ ∈ R.

We know that T and T ′ are I-saturated, hence they contain size(T ) and
size(T ′) points of I, respectively. Assume that T∩T ′ and T∨T ′ contain x and
y points of I. Then since we shown that size(T∩T ′)+size(T∨T ′) = size(T )+
size(T ′), we have that x+y ≥ size(T )+size(T ′) = size(T ∩T ′)+size(T ∨T ′).
But I is in In,d, so x ≤ size(T ∩ T ′) and y ≤ size(T ∨ T ′). This can only
happen if equality holds, and T ∩ T ′ and T ∨ T ′ are I-saturated.

5 This is the right matroid.

We now show that the matroid Tn,d of Section 4 is, indeed, the matroid that
arises from intersecting d flags in Cn which are generic enough.

Theorem 5.1. If d complete flags E1
• , . . . , E

d
• in Cn are generic enough,

then the matroid of the
(
n+d−2

d−1

)
lines Ea1,...,ad

is isomorphic to Tn,d.

Proof. As mentioned in Section 3, the one-dimensional intersections of the
Ei
•s satisfy the following combinatorial relations: each k dimensional sub-

space Eb1,...,bd
with b1 + · · ·+ bd = (d− 1)n + k, contains the lines Ea1,...,ad

with ai ≤ bi; therefore, it is impossible for k + 1 of these lines to be inde-
pendent. The subspace Eb1,...,bd

corresponds to the simplex of dots which is
labelled Tn−b1,...,n−bd

, and has size n −
∑

(n − bi) = k. The lines Ea1,...,ad

with ai ≤ bi correspond precisely with the dots in this copy of Tk,d. So these
“combinatorial relations” are precisely the dependence relations of Tn,d.
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Now we need to show that, if the flags are generic enough, these are the
only linear relations among these lines. It is enough to construct one set of
flags which satisfies no other relations.

Consider a set H of d(n − 1) hyperplanes H i
j in Cn (for 1 ≤ i ≤ d

and 1 ≤ j ≤ n − 1) which are generic in the sense of Theorem 2.2, so the
only dependence relations among their one-dimensional intersections are the
combinatorial ones. Now, for i = 1, . . . , d, define the flag Ei

• by:

Ei
n−1 = H i

n−1

Ei
n−2 = H i

n−1 ∩H i
n−2

...
Ei

1 = H i
n−1 ∩H i

n−2 ∩ · · · ∩H i
1,

We will show that these d flags are generic enough; in other words, the
matroid of their one-dimensional intersections is Tn,d.

Let us assume that a set S of one-dimensional intersections of the Ei
•s

is dependent. Since each line in S is a one-dimensional intersection of the
hyperplanes H i

j , we can apply Theorem 2.2. It tells us that for some t we
can find t + 1 lines in S and a set T of n− t hyperplanes H i

j which contain
all of them.

Our t + 1 lines are of the form

Ea1,...,ad
= E1

a1
∩ · · · ∩ Ed

ad

= (H1
n−1 ∩ · · · ∩H1

a1
) ∩ · · · ∩ (Hd

n−1 ∩ · · · ∩Hd
ad

).

Therefore, if a hyperplane H i
j contains them, so does H i

k for any k > j. Let
us add all such hyperplanes to our set T , to obtain the set

U = {H1
n−1, . . . ,H

1
b1 , . . . ,H

d
n−1, . . . ,H

d
bd
},

where bi is the smallest j for which H i
j is in T . The set U contains

∑
(n−bi)

hyperplanes, so
∑

(n− bi) ≥ n− t.
Each one of our t + 1 lines is contained in each of the hyperplanes in U ,

and therefore in their intersection⋂
Hi

j∈U

H i
j = Eb1,...,bd

,

which has dimension n−
∑

(n− bi) ≤ t.
So, actually, the dependence of the set S is a consequence of one of

the combinatorial dependence relations present in Tn,d. The desired result
follows.
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With Theorem 5.1 in mind, we will say that the complete flags E1
• , . . . , E

d
•

in Cn are matroid-generic if the matroid of the
(
n+d−2

d−1

)
lines Ea1,...,ad

is
isomorphic to Tn,d.

We conclude this section by showing that the one-dimensional intersec-
tions of matroid-generic flag arrangements are completely characterized by
their combinatorial properties.

Proposition 5.2. If a line arrangement L in Cn has matroid Tn,d, then
it can be realized as the arrangement of one-dimensional intersections of d
complete flags in Cn.

Proof. To make the notation clearer, let us give the proof for d = 3, which
generalizes trivially to larger values of d. Denote the lines in L by Lrst for
r + s + t = 2n + 1. Consider the three flags E•, F• and G• given by

Ei = span{Lrst | r ≤ i}
Fi = span{Lrst | s ≤ i}
Gi = span{Lrst | t ≤ i}

for 0 ≤ i ≤ n. Compare this with Figure 2 in the case n = 4. The subspace
Ei, for example, is the span of the lines corresponding to the first i rows of
the triangle.

Since L is a representation of the matroid Tn,3, the dimensions of Ei, Fi,
and Gi are equal to i, which is the rank of the corresponding sets (copies of
Ti,3) in Tn,3.

We now claim that the line arrangement corresponding to E•, F• and
G• is precisely L. This amounts to showing that Ei ∩ Fj ∩ Gk = Lijk for
i + j + k = 2n + 1. We know that Lijk is in Ei, Fj , and Gk by definition, so
we simply need to show that dim(Ei ∩ Fj ∩Gk) = 1.

Assume dim(Ei ∩ Fj ∩Gk) ≥ 2. Consider the sequence of subspaces:
Ei ∩ Fj ∩Gk ⊆ Ei+1 ∩ Fj ∩Gk ⊆ · · · ⊆ En ∩ Fj ∩Gk ⊆

⊆ En ∩ Fj+1 ∩Gk ⊆ · · · ⊆ En ∩ Fn ∩Gk ⊆
⊆ En ∩ Fn ∩Gk+1 ⊆ · · · ⊆ En ∩ Fn ∩Gn.

There are 1 + (n− i) + (n− j) + (n− k) = n subspaces on this list; the
first one has dimension at least 2, and the last one has dimension n. By the
pigeonhole principle, two consecutive subspaces on this list must have the
same dimension. Since one is contained in the other, these two subspaces
must actually be equal. So assume that Ea−1 ∩ Fb ∩ Gc = Ea ∩ Fb ∩ Gc; a
similar argument will work in the other cases.

Now, we have a + b + c > i + j + k = 2n + 1, so we can find positive
integers β ≤ b and γ ≤ c such that a + β + γ = 2n + 1. Then Laβγ is a line

14



which, by definition, is in Ea, Fb and Gc. It follows that

Laβγ ∈ Ea ∩ Fb ∩Gc = Ea−1 ∩ Fb ∩Gc ⊆ Ea−1.

This implies that Laβγ is dependent on {Lrst | r ≤ a−1}, which is impossible
since L represents the matroid Tn,3. We have reached a contradiction, which
implies that dim(Ei ∩ Fj ∩Gk) = 1 and therefore Ei ∩ Fj ∩Gk = Lijk.

It follows that L is the line arrangement determined by flags E•, F• and
G•, as we wished to show.

6 Rhombus tilings of holey triangles and the ma-
troid Tn,3.

Let us change the subject for a moment.

Figure 4: T (4) and the three rhombus tiles.

Let T (n) be an equilateral triangle with side length n. Suppose we
wanted to tile T (n) using unit rhombi with angles equal to 60◦ and 120◦.
It is easy to see that this task is impossible, for the following reason. Cut
T (n) into n2 unit equilateral triangles, as illustrated in Figure 4; n(n+1)/2
of these triangles point upward, and n(n − 1)/2 of them point downward.
Since a rhombus always covers one upward and one downward triangle, we
cannot use them to tile T (n).

Suppose then that we make n holes in the triangle T (n) by cutting out
n of the upward triangles. Now we have an equal number of upward and
downward triangles, and it may or may not be possible to tile the remaining
shape with rhombi. Figure 5 shows a tiling of one such holey triangle.

The main question we address in this section is the following:

Question 6.1. Given n holes in T (n), is there a simple criterion to deter-
mine whether there exists a rhombus tiling of the holey triangle that remains?
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Figure 5: A tiling of a holey T (4).

A rhombus tiling is equivalent to a perfect matching between the upward
triangles and the downward triangles. Hall’s theorem then gives us an answer
to Question 6.1: It is necessary and sufficient that any k downward triangles
have a total of at least k upward triangles to match to.

However, the geometry of T (n) allows us to give a simpler criterion.
Furthermore, this criterion reveals an unexpected connection between these
rhombus tilings and the line arrangement determined by 3 generically chosen
flags in Cn. Notice that the upward triangles in T (n) can be identified with
the dots of Tn,3.

Theorem 6.2. Let S be a set of n holes in T (n). The triangle T (n) with
holes at S can be tiled with rhombi if and only if the locations of the holes
constitute a basis for the matroid Tn,3; i.e., if and only if every T (k) in T (n)
contains at most k holes of S, for all k ≤ n.

Proof. First suppose that we have a tiling of the holey triangle, and consider
any triangle T (k) in T (n). Consider all the tiles which contain one or two
triangles of that T (k), and let R be the holey region that these tiles cover.
Since all the boundary triangles of T (k) face up, the region R is just T (k)
with some downward triangles glued to its boundary.

If T (k) had more than k holes, it would have fewer than k(k − 1)/2
upward triangles, and so would R. However, R has at least the k(k − 1)/2
downward triangles of T (k). That makes it impossible to tile the region R,
which contradicts its definition. This proves the forward direction.

Now let S be a set of n holes in T (n) such that every T (k) contains at
most k holes. Equivalently, think of S as a basis of the matroid Tn,3. We
construct a tiling of the resulting holey triangle by induction on n. The case
n = 1 is trivial, so assume n ≥ 2.

Within that induction, we induct on the number of holes of S in the
bottom row of T (n). Since the T (n − 1) of the top n − 1 rows contains at
most n− 1 holes, there is at least one hole in the bottom row.
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If there is exactly one hole in the bottom row, then the tiling of the
bottom row is forced upon us, and the top T (n−1) can be tiled by induction.
Now assume that there are at least two holes in the bottom row; call the two
leftmost holes x and y in that order. Consider the upward triangles in the
second to last row which are between x and y; label them a1, . . . , at. This
is illustrated in an example in the top left panel of Figure 6. Here a1, a2, a3

and a4 are shaded lightly, and a1 is also a hole.

Figure 6: Sliding the hole from ai to x.

We claim that we can exchange the hole x for one of the holes ai, so that
the set of holes (S−x)∪ai is also a basis of Tn,3. Notice that this ai cannot
be in S. Assume that no such ai exists. Then each ai must be in a triangle
Ti which is (S − x)-saturated.4 If ai is in S, then Ti = ai. The triangle y
is also trivially (S − x)-saturated. We can then use Lemma 4.2 successively
to obtain an (S − x)-saturated triangle containing a1, . . . , at, and y. But
that triangle will also contain x, so it will contain more holes of S than it is
allowed.

So let ai be such that S − x ∪ ai is a basis of Tn,3. For instance, in the
first step of Figure 6, x is exchanged for a3. Notice that S − x∪ ai contains
fewer holes in the bottom row than S does. By the induction hypothesis,
we can tile the T (n) with holes at S−x∪ ai, as shown in the second step of
Figure 6. The bottom row of this tiling is frozen from left to right until it
reaches y. Therefore, we can slide the hole from ai back to x in the obvious
way, by reversing the tiles in the bottom row between x and ai. This is
illustrated in the last step of Figure 6. We are left with a tiling with holes
at S, as desired.

4As in Section 4, if A is a set of holes, we say that an upward triangle of size k is
A-saturated if it contains k holes of A.
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Theorem 6.2 allows us to say more about the structure of the matroid
Tn,3. We first remind the reader of the definition of two important fami-
lies of matroids, called transversal and cotransversal matroids. For more
information, we refer the reader to [1, 32].

Let S be a finite set, and let A1, . . . , Ar be subsets of S. A transversal of
(A1, . . . , Ar), also known as a system of distinct representatives, is a subset
{e1, . . . , er} of S such that ei is in Ai for each i, and the eis are distinct. The
transversals of (A1, . . . , Ar) are the bases of a matroid on S. Such a matroid
is called a transversal matroid, and (A1, . . . , Ar) is called a presentation of
the matroid.

Let G be a directed graph with vertex set V , and let A = {v1, . . . , vr}
be a subset of V . We say that an r-subset B of V can be linked to A if
there exist r vertex-disjoint directed paths whose initial vertex is in B and
whose final vertex is in A. We will call these r paths a routing from B to
A. The collection of r-subsets which can be linked to A are the bases of a
matroid denoted L(G, A). Such a matroid is called a cotransversal matroid
or a strict gammoid. It is a nontrivial fact that these matroids are precisely
the duals of the transversal matroids [1, 32].

Theorem 6.3. The matroid Tn,3 is cotransversal.

First proof. We prove that T ∗
n,3 is transversal. We can think of the ground

set of Tn,3 as the set of upward triangles in T (n). By Theorem 6.2, a basis
of Tn,3 is a set of n holes for which the resulting holey triangle can be tiled;
its complement is the set of

(
n
2

)
upward triangles which share a tile with one

of the
(
n
2

)
downward triangles.

Number the downward triangles 1, 2, . . . , N =
(
n
2

)
. Then a tiling of the

complement of a basis of Tn,3 is nothing but a transversal of (A1, . . . , AN ),
where Ai is the set of three upward triangles which are adjacent to downward
triangle i. This completes the proof.

Second proof. We prove that Tn,3 is cotransversal. Let Gn be the directed
graph whose set of vertices is the triangular array Tn,3, where each dot not
on the bottom row is connected to the two dots directly below it. Label the
dots on the bottom row 1, 2, . . . , n. Figure 7 shows G4; all the edges of the
graph point down.

We now recall a trick, commonly used in the tilings literature and at-
tributed to Dana Randall, to convert tilings into routings; see for example
[26]. In our particular situation, it allows us to view rhombus tilings of the
holey triangle T (n) as routings in Gn. The trick works as follows: A copy of
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Figure 7: The graph G4.

the graph Gn can be drawn whose vertices are the midpoints of the possible
horizontal edges of a tiling. Given a tiling of a holey T (n), join two vertices
of Gn if they are on opposite edges of the same tile; this gives the desired
routing of Gn. This correspondence is best understood in an example; see
Figure 8.

1 2 3 4

Figure 8: A tiling of a holey T (4) and the corresponding routing of G4.

Given such a routing, one can easily recover the tiling that gave rise to
it: simply place one rhombus over each edge in the routing, and one vertical
rhombus over each isolated vertex. It is easy to check that this is a bijection
between the rhombus tilings of the holey triangles of size n, and the routings
in the graph Gn which start anywhere and end at vertices 1, 2, . . . , n.

Notice also that, in this bijection, the holes of the holey triangle corre-
spond to the starting points of the n paths in the routing. From Theorem
6.2, it follows that Tn,3 is the cotransversal matroid L(Gn, [n]).
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Theorem 6.4. Assign sufficiently generic weights to the edges of Gn.5 For
each dot D in the triangular array Tn,3 and each 1 ≤ i ≤ n, let vD,i be the
sum of the weights of all paths6 from dot D to dot i on the bottom row.

Then the path vectors vD = (vD,1, . . . , vD,n) are a geometric representa-
tion of the matroid Tn,3.

For example, the top dot of T4,3 in Figure 7 would be assigned the
path vector (acg, ach + adi + bei, adj + bej + bfk, bfl). Similarly, focusing
our attention on the top three rows, the representation we obtain for the
matroid T3,3 is given by the columns of the following matrix: 1 0 0 c 0 ac

0 1 0 d e ad + be
0 0 1 0 f bf


Proof of Theorem 6.4. By the Lindström-Gessel-Viennot lemma [17, 20, 25,
30], the determinant of the matrix with columns vD1 , . . . , vDn is equal to
the signed sum of the routings from {D1, . . . , Dn} to {1, . . . , n}. The sign
of a routing is the sign of the permutation of Sn which matches the starting
points and the ending points of the n paths. For sufficiently generic weights,
this signed sum can only equal zero if it is empty.

Therefore, vD1 , . . . , vDn are independent if and only if there exists a
routing from {D1, . . . , Dn} to {1, . . . , n}. This is equivalent to {D1, . . . , Dn}
being a basis of L(Gn, [n]).

It is worth pointing out that Lindström’s original motivation for the
discovery of the Lindström-Gessel-Viennot lemma was to explain Mason’s
construction of a geometric representation of an arbitrary cotransversal ma-
troid [25, 29]. Theorem 6.4 and its proof are special cases of their more
general argument; we have included them for completeness.

The very simple and explicit representation of Tn,3 of Theorem 6.4 will
be shown in Section 9 to have an unexpected consequence in the Schubert
calculus: it provides us with a reasonably efficient method for computing
Schubert structure constants in the flag manifold.

5We will see that it is enough to choose weights in a certain Zariski open set.
6The weight of a path is defined to be the product of the weights of its edges.
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7 Fine mixed subdivisions of n∆d−1 and triangula-
tions of ∆n−1 ×∆d−1.

The surprising relationship between the geometry of three flags in Cn and the
rhombus tilings of holey triangles is useful to us in two ways: it explains the
structure of the matroid Tn,3, and it clarifies the conditions for a rhombus
tiling of such a region to exist. We now investigate a similar connection
between the geometry of d flags in Cn, and certain (d − 1)-dimensional
analogs of these tilings, known as fine mixed subdivisions of n∆d−1.

The fine mixed subdivisions of n∆d−1 are in one-to-one correspondence
with the triangulations of the polytope ∆n−1×∆d−1. The triangulations of
a product of two simplices are fundamental objects, which have been studied
from many different points of view. They are of independent interest [3, 4,
16], and have been used as a building block for finding efficient triangulations
of high dimensional cubes [18, 31] and disconnected flip-graphs [40, 41].
They also arise very naturally in connection with tropical geometry [11],
transportation problems, and Segre embeddings [42]. In the following two
sections, we provide evidence that triangulations of ∆n−1 × ∆d−1 are also
closely connected to the geometry of d flags in Cn, and that their study can
be regarded as a study of tropical oriented matroids.

Instead of thinking of rhombus tilings of a holey triangle, it will be
slightly more convenient to think of them as lozenge tilings of the triangle:
these are the tilings of the triangle using unit rhombi and upward unit
triangles. A good high-dimensional analogue of the lozenge tilings of the
triangle n∆2 are the fine mixed subdivisions of the simplex n∆d−1; we briefly
recall their definition.

The Minkowski sum of polytopes P1, . . . , Pk in Rm, is:

P = P1 + · · ·+ Pk := {p1 + · · ·+ pk | p1 ∈ P1, . . . , pk ∈ Pk}.

We are interested in the Minkowski sum n∆d−1 of n simplices. Define a
fine mixed cell of this sum n∆d−1 to be a Minkowski sum B1 + · · · + Bn,
where the Bis are faces of ∆d−1 which lie in independent affine subspaces,
and whose dimensions add up to d − 1. A fine mixed subdivision of n∆d−1

is a subdivision7 of n∆d−1 into fine mixed cells [38, Theorem 2.6].
Consider the case d = 3. If the vertices of ∆2 are labelled A,B, and

C, there are two different kinds of fine mixed cells: a unit triangle like
7A subdivision of a polytope P is a tiling of P with polyhedral cells whose vertices are

vertices of P , such that the intersection of any two cells is a face of both of them.
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ABC+A+B+· · ·+A, and a unit rhombus like AB+AC+A+· · ·+C (which
can face in three possible directions). Therefore the fine mixed subdivisions
of the triangle n∆2 are precisely its lozenge tilings. In these sums, the
summands which are not points determine the shape of the fine mixed cell,
while the summands which are points translate that cell inside n∆2. This is
illustrated in the right hand side of Figure 9: a lozenge tiling of 2∆2 whose
tiles are ABC + B, AC + AB, and C + ABC.

For d = 4, if we label the tetrahedron ABCD, we have four congruence
classes of fine mixed cells: tetrahedra like ABCD + A + · · · , triangular
prisms like ABC+AD+A+ · · · , and two different classes of parallelepipeds:
AB + AC + AD + A + · · · and AB + BC + CD + A + · · · .

In the same way that we identified arrays of triangles with triangular
arrays of dots in Section 6, we can identify the array of possible locations
of the simplices in n∆d−1 with the array of dots Tn,d defined in Section 3.
A conjectural generalization of Theorem 6.2, which we now state, would
show that fine mixed subdivisions of n∆d−1 are also closely connected to
the matroid Tn,d.

Conjecture 7.1. The possible locations of the simplices in a fine mixed
subdivision of n∆d−1 are precisely the bases of the matroid Tn,d.

In the remainder of this section, we will give a completely combinatorial
description of the fine mixed subdivisions of n∆d−1. Then, in Section 8,
we will use this description to prove Proposition 8.2, which is the forward
direction of Conjecture 7.1.

We start by recalling the one-to-one correspondence between the fine
mixed subdivisions of n∆d−1 and the triangulations of ∆n−1 ×∆d−1. This
equivalent point of view has the drawback of bringing us to a higher-dimen-
sional picture. Its advantage is that it simplifies greatly the combinatorics
of the tiles, which are now just simplices.

Let v1, . . . , vn and w1, . . . , wd be the vertices of ∆n−1 and ∆d−1, so that
the vertices of ∆n−1 ×∆d−1 are of the form vi × wj . A triangulation T of
∆n−1 × ∆d−1 is given by a collection of simplices. For each simplex t in
T , consider the fine mixed cell whose i-th summand is wawb . . . wc, where
a, b, . . . , c are the indexes j such that vi × wj is a vertex of t. These fine
mixed cells constitute the fine mixed subdivision of n∆d−1 corresponding to
T . (This bijection is only a special case of the more general Cayley trick,
which is discussed in detail in [38].)

For instance, Figure 9 shows a triangulation of the triangular prism
∆1×∆2 = 12×ABC, and the corresponding fine mixed subdivision of 2∆2,
whose three tiles are ABC + B,AC + AB, and C + ABC.
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Figure 9: The Cayley trick.

Consider the complete bipartite graph Kn,d whose vertices are v1, . . . , vn

and w1, . . . , wd. Each vertex of ∆n−1 × ∆d−1 corresponds to an edge of
Kn,d. The vertices of each simplex in ∆n−1 × ∆d−1 determine a subgraph
of Kn,d. Each triangulation of ∆n−1 ×∆d−1 is then encoded by a collection
of subgraphs of Kn,d. Figure 10 shows the three trees that encode the
triangulation of Figure 9.
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Figure 10: The trees corresponding to the triangulation of Figure 9.

Our next result is a combinatorial characterization of the triangulations
of ∆n−1 ×∆d−1.

Proposition 7.2. A collection of subgraphs t1, . . . , tk of Kn,d encodes a
triangulation of ∆n−1 ×∆d−1 if and only if:

1. Each ti is a spanning tree.

2. For each ti and each internal8 edge e of ti, there exists an edge f and
a tree tj with tj = (ti − e) ∪ f .

8An edge of a tree is internal if it is not adjacent to a leaf.
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3. There do not exist two trees ti and tj, and a circuit C of Kn,d which
alternates between edges of ti and edges of tj.

Proof. If e1, . . . , en, f1, . . . , fd is a basis of Rn+d, then a realization of the
polytope ∆n−1 ×∆d−1 is given by assigning the vertex vi × wj coordinates
ei+fj . It is then easy to see that the oriented matroid of affine dependencies
of ∆n−1×∆d−1 is the same as the oriented matroid of the graph Kn,d, with
edges oriented vi → wj for 1 ≤ i ≤ n, 1 ≤ j ≤ d. In other words, each
minimal affinely dependent set C of vertices of ∆n−1×∆d−1 corresponds to a
circuit of the graph Kn,d. Furthermore, the sets C+ and C− of vertices which
have positive and negative coefficients in the affine dependence relation of C
correspond, respectively, to the edges that the circuit of Kn,d traverses in the
forward and backward direction. Therefore, a set of vertices of ∆n−1×∆d−1

forms an (n + d − 2)-dimensional simplex if and only if it is encoded by a
spanning tree of Kn,d.

The three conditions in the statement of Proposition 7.2 simply rephrase
the following result [39, Theorem 2.4.(f)]:

Suppose we are given a polytope P , and a non-empty collection of
simplices whose vertices are vertices of P . The simplices form a
triangulation of P if and only if they satisfy the pseudo-manifold
property, and no two simplices overlap on a circuit.

The pseudo-manifold property is that, for any simplex σ and any facet τ
of σ, either τ is in a facet of P , or there exists another simplex σ′ with τ ⊂ σ′.
The facets of ∆n−1 ×∆d−1 are of the form F ×∆d−1 for a facet F of ∆n−1

(obtained by deleting one of the vertices of ∆n−1), or ∆n−1 ×G for a facet
G of ∆d−1 (obtained by deleting one of the vertices of ∆d−1). Therefore, in
the simplex σ corresponding to tree t, the facet of σ corresponding to t− e
is in a facet of ∆n−1 ×∆d−1 if and only if t − e has an isolated vertex. So
in this case, 2. is equivalent to the pseudo-manifold property.

Two simplices σ and σ′ are said to overlap on a signed circuit C =
(C+, C−) of P if σ contains C+ and σ′ contains C−. The circuits of the
polytope ∆n−1 × ∆d−1 correspond precisely to the circuits of Kn,d, which
are alternating in sign. Therefore this condition is equivalent to 3.

In light of Proposition 7.2, we will call a collection of spanning trees
satisfying the above properties a triangulation of ∆n−1 ×∆d−1.

Proposition 7.2 is implicit in work of Kapranov, Postnikov, and Zelevin-
sky [34, Section 12], and Babson and Billera [3]. The latter also gave a
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different combinatorial description of the regular triangulations, which we
now describe.

Recall the following geometric method for obtaining subdivisions of a
polytope P in Rd. Assign a height h(v) to each vertex v of P , lift the vertex
v to the point (v, h(v)) in Rd+1, and consider the lower facets of the convex
hull of those new points in Rd+1. The projections of those lower facets onto
the hyperplane xd+1 = 0 form a subdivision of P . Such a subdivision is
called regular or coherent.

A regular subdivision of the polytope ∆n−1 ×∆d−1 is determined by an
assignment of heights to its vertices. This is equivalent to a weight vector
w consisting of a weight wij for each edge ij of Kn,d. Let a w-weighting
be an assignment (u, v) of vertex weights u1, . . . , un, v1, . . . , vd to Kn,d such
that ui + vj ≥ wij for every edge ij of Kn,d. Say edge ij is w-tight if
the equality ui + vj = wij holds; these edges form the w-tight subgraph of
(u, v). A subgraph of Kn,d is w-tight if it is the w-tight subgraph of some
w-weighting.

Proposition 7.3. [3] Let w be a height vector for ∆n−1×∆d−1 or, equiva-
lently, a weight vector on the edges of Kn,d. The regular subdivision corres-
ponding to w consists of the maximal w-tight subgraphs of Kn,d.

Say a weight vector w is generic if no circuit of Kn,d has alternating sum
of weights equal to 0. We leave it to the reader to check, using Proposition
7.3, that generic weight vectors are precisely the ones that give rise to regular
triangulations. Hence, if w is generic, the maximal w-tight subgraphs of
Kn,d are trees, and they satisfy the conditions of Proposition 7.2. It is an
instructive exercise to prove this directly.

8 Subdivisions of n∆d−1 and the matroid Tn,d.

Having given a combinatorial characterization of the triangulations of the
polytope ∆n−1×∆d−1 in Proposition 7.2, we are now in a position to prove
the forward direction of Conjecture 7.1, which relates these triangulations to
the matroid Tn,d. The following combinatorial lemma will play an important
role in our proof.

Proposition 8.1. Let n, d, and a1, . . . , ad be non-negative integers such that
a1 + · · ·+ ad ≤ n − 1. Suppose we have a coloring of the n(n − 1) edges of
the directed complete graph Kn with d colors, such that each color defines a
poset on [n]; in other words,
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(a) the edges u → v and v → u have different colors, and

(b) if u → v and v → w have the same color, then u → w has that same
color.

Call a vertex v outgoing if, for every i, there exist at least ai vertices
w such that v → w has color i. Then the number of outgoing vertices is at
most n− a1 − · · · − ad.

Proof. We have d poset structures on the set [n], and this statement says
that we cannot have “too many” elements which are “very large” in all the
posets.

Say there are x outgoing vertices, and let v be one of them. Let xi be
the number of i-colored edges which go from v to another outgoing vertex,
so x1 + . . . + xd = x− 1.

Consider the x1 outgoing vertices u1, . . . , ux1 such that v → uj is blue.
The blue subgraph of Kn is a poset; so among the ujs we can find a minimal
one, say u1, in the sense that u1 → uj is not blue for any j. Since u1 is
outgoing, there are at least a1 vertices w of the graph such that u1 → w is
blue. This gives us a1 vertices w, other than the uis, such that v → w is
blue. Therefore the blue outdegree of v in Kn is at least x1 + a1.

Repeating the same reasoning for the other colors, and summing over all
colors, we obtain:

n− 1 =
d∑

i=1

(color-i outdegree of v)

≥
d∑

i=1

(xi + ai)

= x− 1 +
d∑

i=1

ai,

which is precisely what we wanted to show.

Notice that the bound of Proposition 8.1 is optimal. To see this, partition
[n] into sets A1, . . . , Ad, A of sizes a1, . . . , ad, n− a1 − · · · − ad, respectively.
For each i, let the edges from A to Ai have color i. Let the edges from A1 to
A have color d, and the edges from the other Ais to A have color 1. Pick a
linear order for A, and let the edges within A have color d in the increasing
order, and color 1 in the decreasing order. Pick a linear order for A1∪· · ·∪Ad

where the elements of A1 are the smallest and the elements of Ad are the
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largest. Let the edges within A1 ∪ · · · ∪ Ad have color d in the increasing
order, and color 1 in the decreasing order. It is easy to check that this
coloring satisfies the required conditions, and it has exactly n−a1−· · ·−ad

outgoing vertices.
Also notice that our proof of Proposition 8.1 generalizes almost imme-

diately to the situation where we allow edges to be colored with more than
one color.

We have now laid down the necessary groundwork to prove one direction
of Conjecture 7.1.

Proposition 8.2. In any fine mixed subdivision of n∆d−1,

(a) there are exactly n tiles which are simplices, and

(b) the locations of the n simplices give a basis of the matroid Tn,d.

Proof of Proposition 8.2. Let us look back at the way we defined the cor-
respondence between a triangulation T of ∆n−1 × ∆d−1 and a fine mixed
subdivision f(T ) of n∆d−1. It is clear that the simplices f(t) of f(T ) arise
from those simplices t of T whose vertices are vi×w1, . . . , vi×wd (for some
i), and one vj × wg(j) for each j 6= i. Furthermore, the location of f(t) in
n∆d−1 is given by the sum of the wg(j)s.

3 4

vv 5vv v32 4

2

1

w w1 ww

Figure 11: A spanning tree of K5,4.

For instance the spanning tree of K5,4 shown in Figure 11 gives rise
to a simplex in a fine mixed subdivision of 5∆3 = 5w1w2w3w4 given by the
Minkowski sum w1 +w1 +w3 +w1w2w3w4 +w2. The location of this simplex
in 5∆3 corresponds to the point (2, 1, 1, 0) of T5,4, because the Minkowski
sum above contains two w1 summands, one w2, and one w3.

In other words, the simplices of the fine mixed subdivision of n∆d−1

come from spanning trees t of Kn,d for which one vertex vi has degree d
and the other vjs have degree 1. The coordinates of the location of f(t) in
n∆d−1 are simply (degt w1 − 1, . . . ,degt wd − 1). Call such a simplex, and
the corresponding tree, i-pure. Figure 11 shows a 4-pure tree. Also, in the
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triangulation of Figures 9 and 10, there is a 1-pure tree and a 2-pure tree,
which give simplices in locations (0, 1, 0) and (0, 0, 1) of 2∆2, respectively.

Proof of (a). We claim that in a triangulation T of ∆n−1 × ∆d−1 there is
exactly one i-pure simplex for each i with 1 ≤ i ≤ n.

First we show there is at least one i-pure simplex. If we restrict the trees
of T to the “claw” subgraph K{vi},{w1,...,wd}, they should encode a triangula-
tion of the face vi×(w1 . . . wd) of ∆n−1×∆d−1. This triangulation necessarily
consists of a single simplex, encoded by the claw graph. Therefore, there
must be at least one spanning tree t in T containing this claw.

Now assume that we have two i-pure trees t1 and t2. They must differ
somewhere, so assume that t1 contains edge vawb and t2 contains vawc. Then
we have a circuit vawbviwc of Kn,d whose edges alternate between t1 and t2,
a contradiction.

Proof of (b). As in the proof of Lemma 4.2, let Ta1,...,ad
be the simplex

consisting of the locations (x1, . . . , xd) in n∆d−1 such that
∑

xi = n and
xi ≥ ai for each i. We need to show that Ta1,...,ad

, which has a sidelength
of n− a1 − · · · − ad, contains at most n− a1 − · · · − ad simplices of the fine
mixed subdivision.

Somewhat predictably, we will construct a coloring of the directed com-
plete graph Kn which will allow us to invoke Proposition 8.1. This coloring
will be an economical way of storing the descriptions of the n pure simplices
or, equivalently, the n pure trees. Let ti be the i-pure tree in the corre-
sponding triangulation of ∆n−1×∆d−1. We will color the edge i → j in Kn

with the color a, where wa is the unique neighbor of vertex vj in tree ti. We
claim that the a-colored subgraph of Kn is a poset for each color a.

First assume that i → j and j → i have the same color a. Then tree ti
contains edge vjwa and tree tj contains edge viwa. Then, for any b 6= a, we
have a circuit viwbvjwa of Kn,d which alternates between edges of ti and tj ,
a contradiction.

Now assume that i → j and j → k have color a, but i → k has some
other color b. This means that vjwa and vkwb are edges of ti and vkwa is an
edge of tj . But then the circuit vjwavkwb of Kn,d alternates between edges
of ti and tj , a contradiction.

We can now apply Proposition 8.1, and conclude that there are at most
n− a1 − . . .− ad outgoing vertices in our coloring of Kn. But observe that
the simplex of n∆d−1 corresponding to the i-pure tree ti is in location

(degti(w1)−1, . . . ,degti(wn)−1) = (outdegKn,color 1(i), . . . , outdegKn,color d(i)).

Therefore the simplex of the fine mixed subdivision which corresponds
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to ti is in Ta1,...,ad
if and only if vertex i is outgoing in our coloring of Kn.

The desired result follows.

For the converse of Conjecture 7.1, we would need to show that every
basis of Tn,d arises from the placement of simplices in some fine mixed sub-
division of n∆d−1. In fact, a stronger result might hold, which we state after
introducing the necessary definitions.

Recall the definition of a regular subdivision of a polytope given in Sec-
tion 7. Similarly, a regular mixed subdivision of a Minkowski sum P1+· · ·+Pn

in Rd is obtained by assigning a height hi(v) to each vertex v of Pi, and pro-
jecting the lower facets of the convex hull of the points in Rd+1 of the form
(v1, h1(v1)) + · · ·+ (vn, hn(vn)), where vi is a vertex of Pi.

Question 8.3. Is it true that, for any basis B of Tn,d, there is a regular
fine mixed subdivision of n∆d−1 whose n simplices are located at B?

The Cayley trick provides us with a bijection between the triangulations
of ∆n−1 ×∆d−1 and the fine mixed subdivisions of n∆d−1. This correspon-
dence also gives a bijection between regular triangulations of ∆n−1 ×∆d−1

and regular fine mixed subdivisions of n∆d−1 [19, Theorem 3.1]. There is
also a correspondence between the regular triangulations of ∆n−1×∆d−1 and
the combinatorial types of arrangements of d generic tropical hyperplanes
in tropical (n− 1)-space [11, 38].

Just as the combinatorial properties of real hyperplane arrangements are
captured in the theory of oriented matroids, tropical hyperplane arrange-
ments deserve an accompanying theory of tropical oriented matroids. The
discussion of the previous paragraph suggests that subdivisions of products
of two simplices play the role of tropical oriented matroids, with regular
subdivisions corresponding to realizable tropical oriented matroids. The
multiple appearances of these subdivisions in the literature are presumably
a good indication of the applicability of tropical oriented matroid theory.
Our ability to attack Conjecture 7.1 and Question 8.3 is one way to measure
our progress on this theory.

9 Applications to Schubert calculus.

In this section, we show some of the implications of our work in the Schu-
bert calculus of the flag manifold. Throughout this section, we will assume
some familiarity with the Schubert calculus, though we will recall some of
the definitions and conventions that we will use; for more information, see
for example [15, 28]. We will also need some of the results of Eriksson and
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Linusson [12, 13] and Billey and Vakil [6] on Schubert varieties and permu-
tation arrays.

The flag manifold F`n = F`n(C) is a smooth projective variety which
parameterizes the complete flags in Cn. The relative position of any two
flags E• and F• in F`n is given by a permutation w ∈ Sn. Let us explain
what this means.

To the permutation w, we associate the permutation matrix9 which has
a 1 in the w(i)th row of column n − i + 1 for 1 ≤ i ≤ n. Let w[i, j] be the
principal submatrix with lower right hand corner (i, j), and form an n × n
table, called a rank array, whose entry (i, j) is equal to rkw[i, j], the number
of ones in w[i, j]. The matrix and rank array associated to w = 53124 ∈ S5

are shown below.
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1

 →


0 0 1 1 1
0 1 2 2 2
0 1 2 3 3
1 2 3 4 4
1 2 3 4 5

 .

Saying that E• and F• are in relative position w means that the dimensions
dim(Ei ∩ Fj) are given precisely by the rank array of w; that is,

dim(Ei ∩ Fj) = rkw[i, j] for all 1 ≤ i, j ≤ n.

Eriksson and Linusson [12, 13] introduced a higher-dimensional analog
of a permutation matrix, called a permutation array. A permutation array is
an array of dots in the cells of a d-dimensional n×n×· · ·×n box, satisfying
some quite restrictive properties. From a permutation array P , via a simple
combinatorial rule, one can construct a rank array of integers, also of shape
[n]d. We denote it rk P . This definition is motivated by their result [13] that
the relative position of d flags E1

• , . . . , E
d
• in F`n is described by a unique

permutation array P , via the equations

dim
(
E1

x1
∩ · · · ∩ Ed

xd

)
= rk P [x1, . . . , xd] for all 1 ≤ x1, . . . , xd ≤ n.

This result initiated the study of permutation array schemes, which gener-
alize Schubert varieties in the flag manifold F`n. These schemes are much
more subtle than their counterparts; they can be empty, and are not neces-
sarily irreducible or even equidimensional [6].

9Notice that this is slightly different from the usual convention, but it is useful from
the point of view of permutation arrays.
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The relative position of d generic flags is described by the transversal
permutation array

{
(x1, . . . , xd) ∈ [n]d

∣∣ d∑
i=1

xi = (d− 1)n + 1
}

.

For
∑d

i=1 xi = (d − 1)n + 1, the dot at position (x1, . . . , xd) represents a
one-dimensional intersection E1

x1
∩ · · ·∩Ed

xd
. Naturally, we identify the dots

in the transversal permutation array with the elements of the matroid Tn,d.

Given a fixed flag E•, define a Schubert cell and Schubert variety to be

X◦
w(E•) = {F• |E• and F• have relative position w}

= {F• | dim(Ei ∩ Fj) = rkw[i, j] for all 1 ≤ i, j ≤ n}, and
Xw(E•) = {F• | dim(Ei ∩ Fj) ≥ rkw[i, j] for all 1 ≤ i, j ≤ n},

respectively. The dimension of the Schubert variety Xw(E•) is l(w), the
number of inversions of w.

A Schubert problem asks for the number of flags F• whose relative posi-
tions with respect to d given fixed flags E1

• , . . . , E
d
• are given by the permu-

tations w1, . . . , wd. This question only makes sense when

X = Xw1(E1
•) ∩ · · · ∩Xwd(Ed

•)

is 0-dimensional; that is, when l(w1) + · · ·+ l(wd) =
(
n
2

)
. If E1

• , . . . , E
d
• are

sufficiently generic, the intersection X has a fixed number of points cw1...wd

which only depends on the permutations w1, . . . , wd.
This question is a fundamental one for several reasons; the numbers

cw1...wd which answer it appear in another important context. The cycles
[Xw] corresponding to the Schubert varieties form a Z-basis for the coho-
mology ring of the flag manifold F`n, and the numbers cuvw are the mul-
tiplicative structure constants. (For this reason, if we know the answer to
all Schubert problems with d = 3, we can easily obtain them for higher d.)
The analogous structure constants in the Grassmannian are the Littlewood-
Richardson coefficients, which are much better understood. For instance,
even though the cuvws are known to be positive integers, it is a long stand-
ing open problem to find a combinatorial interpretation of them.

Billey and Vakil [6] showed that the permutation arrays of Eriksson and
Linusson can be used to explicitly intersect Schubert varieties, and compute
the numbers cw1...wd .
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Theorem 9.1. (Billey-Vakil, [6]) Suppose that

X = Xw1(E1
•) ∩ · · · ∩Xwd(Ed

•)

is a 0-dimensional and nonempty intersection, with E1
• , . . . , E

d
• generic.

1. There exists a unique permutation array P ⊂ [n]d+1, easily constructed
from w1, . . . , wd, such that

dim
(
E1

x1
∩ · · · ∩ Ed

xd
∩ Fxd+1

)
= rkP [x1, . . . , xd, xd+1],

for all F• ∈ X and all 1 ≤ x1, . . . , xd+1 ≤ n.

2. These equalities can be expressed as a system of determinantal equa-
tions in terms of the permutation array P and a vector va1,...,ad

in each
one-dimensional intersection Ea1,...,ad

= E1
a1
∩ · · ·∩Ed

ad
. This gives an

explicit set of polynomial equations defining X.

Theorem 9.1 highlights the importance of studying the line arrangements
En,d determined by intersecting d generic complete flags in Cn. In principle,
if we are able to construct such a line arrangement, we can compute the
structure constants cuvw for any u, v, w ∈ Sn. (In practice, we still have to
solve the system of polynomial equations, which is not easy for large n or
for d ≥ 5.) Let us make two observations in this direction.

9.1 Matroid genericity versus Schubert genericity.

We have been talking about the line arrangement En,d determined by a
generic flag arrangement E1

• , . . . , E
d
• in Cn. We need to be careful, because

we have given two different meanings to the word generic.
In Sections 3, 4 and 5, we showed that, if E1

• , . . . , E
d
• are sufficiently

generic, then the linear dependence relations in the line arrangement En,d

are described by a fixed matroid Tn,d. We call the flags matroid-generic if
this is the case.

Recall that in the Schubert problem described by permutations w1, . . . , wd

with
∑

l(wi) =
(
n
2

)
, the 0-dimensional intersection

X = Xw1(E1
•) ∩ · · · ∩Xwd(Ed

•)

contains a fixed number of points cw1...wd , provided that E1
• , . . . , E

d
• are

sufficiently generic. Let us say that n flags in Cd are Schubert-generic if
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they are sufficiently generic for any Schubert problem with that given n and
d.

These notions depend only on the line arrangement En,d. The line ar-
rangement En,d is matroid-generic if its matroid is Tn,d, and it is Schubert-
generic if the equations of Theorem 9.1 give the correct number of solutions
to every Schubert problem.

Our characterization of matroid-generic line arrangements (i.e., our de-
scription of the matroid Tn,d) does not tell us how to construct a Schubert-
generic line arrangement. However, when d = 3 (which is the interesting case
in the Schubert calculus), the cotransversality of the matroid Tn,3 allows us
to present such a line arrangement explicitly.

Proposition 9.2. The
(
n
2

)
path vectors of Theorem 6.4 are Schubert-generic.

Proof. For each weighting L of the edges of the graph Gn with complex
numbers, like the one shown in Figure 7, we can define the collection V (L)
of path vectors v(L)D = (v(L)D,1, . . . , v(L)D,n) as in Theorem 6.4: v(L)D,i

is the sum of the weights of all paths from dot D to dot i on the bottom
row of Gn.

Consider an arbitrary geometric representation V of Tn,3 in Cn. By
means of a linear transformation, we can assume that the vectors assigned
to the bottom row are the standard basis e1, . . . , en, in that order. Say D
is any dot in the triangular array Tn,3, and E and F are the dots below
it. Since D,E and F are dependent, and E and F are not, we can write
vD = evE + fvF for some e, f ∈ C. Write the numbers e and f on the
edges DE and DF of Gn. Do this for each dot D, and let L be the resulting
weighting of the edges of Gn. Then the collection V is precisely the collection
V (L) of path vectors of L.

This shows that each matroid-generic line arrangement, i.e., each geo-
metric representation of Tn,3, is given by the path vectors of a weighting of
Gn. Among those matroid-generic line arrangements, the Schubert-generic
ones form a Zariski open set, which will clearly include V (L) for any suffi-
ciently generic weighting L. This completes the proof.

A byproduct of proof of Proposition 9.2 is an interesting statement about
the realization space of the matroid Tn,3. Up to linear equivalence, every
realization of Tn,3 can be obtained from a weighting of the graph Gn.

Proposition 9.2 shows that when we plug the path vectors V (L) into
the polynomial equations of Theorem 9.1, and compute the intersection X,
we will have |X| = cuvw. The advantage of this point of view is that the

33



equations are now written in terms of combinatorial objects, without any
reference to an initial choice of flags.

Problem 9.3. Interpret combinatorially the cuvw solutions of the above sys-
tem of equations, thereby obtaining a combinatorial interpretation for the
structure constants cuvw.

Question 9.4. Is a Schubert generic flag arrangement always matroid generic?

Question 9.5. Is a matroid generic flag arrangement always Schubert generic?

9.2 A criterion for vanishing Schubert structure constants.

Consider the Schubert problem

X = Xw1(E1
•) ∩ · · · ∩Xwd(Ed

•).

Let P ∈ [n]d+1 be the permutation array which describes the dimensions
dim(E1

x1
∩ · · · ∩ Ed

xd
∩ Fxd+1

) for any flag F• ∈ X. Let P1, . . . , Pn be the n
“floors” of P , corresponding to F1, . . . , Fn, respectively. Each one of them
is itself a permutation array of shape [n]d.

Billey and Vakil proposed a simple criterion which is very efficient in
detecting that many Schubert structure constants are equal to zero.

Proposition 9.6. (Billey-Vakil, [6]) If Pn is not the transversal permutation
array, then X = ∅ and cw1...wd = 0.

Knowing the structure of the matroid Tn,d, we can strengthen this crite-
rion as follows.

Proposition 9.7. Suppose Pn is the transversal permutation array, and
identify it with the set Tn,d. If, for some k, the rank of Pk ∩ Pn in Tn,d is
greater than k, then X = ∅ and cw1...wd = 0.

Proof. Each dot in Pn corresponds to a one-dimensional intersection of the
form E1

x1
∩ · · · ∩ Ed

xd
. Therefore, each dot in Pk ∩ Pn corresponds to a line

that Fk is supposed to contain if F• is a solution to the Schubert problem.
The rank of Pk∩Pn is the dimension of the subspace spanned by those lines;
if F• exists, that dimension must be at most k.

Let us see how to apply Proposition 9.7 in a couple of examples. Fol-
lowing the method of [6], the permutations u = v = w = 213 in S3 give rise
to the four-dimensional permutation array consisting of the dots (3, 3, 1, 1),
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(1, 3, 3, 2), (3, 1, 3, 2), (3, 3, 1, 2), (1, 3, 3, 3), (2, 2, 3, 3), (2, 3, 2, 3), (3, 1, 3, 3),
(3, 2, 2, 3), and (3, 3, 1, 3). We follow [13, 44] in representing it as follows:

1

3

3 1

3
3 2

3 2 1

The three boards shown represent the three-dimensional floors P1, P2,
and P3 of P , form left to right. In each one of them, a dot in cell (i, j, k) is
represented in two dimensions by a number k in cell (i, j).

It takes some practice to interpret these tables; but once one is used to
them, it is very easy to proceed. We simply notice that P2 ∩ P3 is a set of
rank 3 in the matroid T3,3, while P2 has rank 2 as a permutation array; we
conclude that c213,213,213 = 0. For n = 3, this is the only vanishing cuvw

which is not explained by Proposition 9.6. In this example, the vanishing of
cuvw can also be seen by comparing the leading terms of the corresponding
Schubert polynomials.

For a larger example, let u = 2134, v = 3142, w = 2314. Notice that
l(u) + l(v) + l(w) = 6. The permutation array we obtain is

4
4

4 1

4

4 3
4 3 1

4
4 3

4 3 2
4 3 2 1

and, since P3 ∩ P4 has rank 4 in T4,3, we see that c2134,3142,2314 = 0.

Knutson [21], Lascoux and Schützenberger [24], Purbhoo [36], and Purb-
hoo and Sottile [37] have developed other methods for detecting the vanish-
ing of Schubert structure constants. In comparing these methods for small
values of n, we have found Proposition 9.7 to be quicker and simpler to ob-
serve, but we have not been able to verify our technique as far as Purbhoo;
he has the best technique thus far, detecting all zeros for n ≤ 7.

Here is an example where our method allows us to “observe” a zero coef-
ficient that Knutson [21, Fact 2.4] claims does not follow from his technique
of descent cycling. Let u = 231645, v = 231645, w = 326154, then the
unique permutation array determined by these three permutations is:
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4
5

5 4
5

5 4
1

(1)

6

5
5 4

6 1

6

6 5
6 5 4

6 5 4 2
6 5 4 2 1

i6
6 5

6 i5 4
6 i5 4 3

6 i5 4 3 2i6 5 4 3 2 i1

(2)

By Theorems 4.1 and 5.1, an independent set on the rank 6 board is deter-
mined by the circled points

{(1, 6, 6), (3, 5, 5), (4, 4, 5), (5, 3, 5), (6, 1, 6), (6, 6, 1)}.

In the rank 4 board, we have the points (1, 6, 6), (6, 1, 6), (6, 6, 1) from this ba-
sis along with (4, 5, 5), (5, 4, 5), (5, 5, 4) which span a two dimensional space
in the span of (3, 5, 5), (4, 4, 5), (5, 3, 5). Therefore, the 4 dimensional board
cannot be satisfied by vectors in a space of dimension less than 5. Hence
cuvw = 0.

Proposition 9.7 is only the very first observation that we can make from
our understanding of the structure of Tn,d. Our argument can be easily fine-
tuned to explain all vanishing Schubert structure constants with n ≤ 5. A
systematic way of doing this in general would be very desirable.

10 Future directions.

We invite our readers to pursue some further directions of study suggested
by the results in this paper. Here they are, in order of appearance.

• Theorem 6.2 generalizes to rhombus tilings of any region in the trian-
gular lattice, or domino tilings of any region in the square lattice. If R
is a region with more upward than downward triangles (or more black
than white squares), let B be the sets of holes such that the remaining
holey region R has a rhombus tiling (or a domino tiling). Then B is
the set of bases of a matroid MR. Are there any other regions R for
which the matroid MR has a nice geometric interpretation? A good
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Figure 12: A fool’s diamond.

candidate, suggested by Jim Propp, is what he calls the fool’s diamond
[35], shown in Figure 12.

• Subdivisions of ∆n−1 × ∆d−1, or equivalently tropical oriented ma-
troids, appear in many different contexts. A detailed investigation of
these objects promises to become a useful tool. Aside from their intrin-
sic interest, Conjecture 7.1 and Question 8.3 should help us develop
this tropical oriented matroid theory.

• We still do not have a solid understanding of the relationship between
two of the main subjects of our paper: the geometry of d flags in Cn

and the triangulations of ∆n−1 × ∆d−1. We have shown that some
aspects of the geometric information of the flags (the combinatorics
of the line arrangement they determine, and the vanishing of many
Schubert structure constants) are described in a small set of tiles of the
triangulations (the n “pure” tiles). Can we use the complete triangula-
tions and fine mixed subdivisions to understand more subtle geometric
questions about flags? Does the geometry of flags tell us something
new about triangulations of products of simplices, and their multiple
appearances in tropical geometry, optimization, and other subjects?

• In particular, do the triangulations of ∆n−1 × ∆d−1 play a role in
the Schubert calculus of the flag manifold F`n? Is this point of view
related to Knutson, Tao, and Woodward’s use of puzzles [22, 23] in
the Grassmannian Schubert calculus? Readers familiar with puzzles
may have noticed the similarities and the differences between them
and lozenge tilings of triangles.

• Problem 9.3 is a promising way of attacking the long-standing open
problem of interpreting cuvw combinatorially.

• Questions 9.4 and 9.5 remain open. Is a Schubert generic flag arrange-
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ment always matroid generic? Is a matroid generic flag arrangement
always Schubert generic?

• Proposition 9.7 is just the first consequence of the matroid Tn,d on
the vanishing of the Schubert structure constants. This argument can
be extended in many ways to explain why other cuvws are equal to 0.
A systematic way of doing this would be desirable, and seems within
reach at least for n ≤ 7.
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