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1 INTRODUCTION

Let {x : 0 ≤ x < 1} be the compact group of real numbers modulo 1. Any irrational

element θ in this set has a continued fraction representation

1
a1+

1

a2+
1

...

where (ai)
∞
i=1 is a sequence of positive integers known as the terms or partial quotients

of the continued fraction. Take
(
mk
nk

)∞
k=1

to be the sequence of principal convergents

of θ; that is,

mk

nk
= [0; a1, a2, . . . , ak]

for each positive integer k. From the theory of continued fractions, we have

nk+1 = ak+1nk + nk−1 (1)

for k ∈ N, with n0 := 1 and n1 = a1. Let (bk)k∈N be a sequence of even integers

satisfying |bj| ≤ aj+1 for each j ∈ N. Given any integer m,

〈m; b1, b2, . . .〉θ :=

(
mθ +

∞∑
j=1

bjnjθ

)
mod 1

de�nes a point of {x : 0 ≤ x < 1}. We call such a representation 〈·〉θ a θ−expansion.

From now on, we omit the �mod 1� notation. Veech [7] de�nes the sets

K0 (θ) := {〈m; b1, b2, . . .〉θ : bj is eventually even, limj→∞ bjnj ‖njθ‖ = 0}

and
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K1 (θ) :=
{
〈m; b1, b2, . . .〉θ : bj is eventually even,

∑∞
j=1 |bj|nj ‖njθ‖ <∞

}

where ‖·‖ denotes the distance to the nearest integer. Clearly, K1 (θ) ⊂ K0 (θ). In

Section 2 we �nd an upper bound formula for the Hausdor� dimension of K0 (θ).

In Section 4.1 we apply a result from [5] to obtain a lower bound formula for the

Hausdor� dimension of K1 (θ). Using these formulas,

in Section 5 we show that for any δ ∈ [0, 1] we can construct a number θ such that

the Hausdor� dimension of Ki (θ) equals δ, where i = 0, 1.

1.1 Veech's Examples and a Billiard Interpretation of these Examples

In [7], Veech constructs examples of minimal and not uniquely ergodic dynamical

systems as follows (see [6]). Take two copies of the unit circle and mark o� segment

a J of length 2πα in the counterclockwise direction on each one with endpoint at 0.

Now choose an irrational θ and consider the following dynamical system. Start with

a point p in the �rst circle. Rotate counterclockwise by 2πθ repeatedly until the the

orbit lands in J ; then switch to the corresponding point in the second circle, rotate

by 2πθ until the �rst time the point lands in J ; switch back to the �rst circle and so

forth. Veech showed there exists irrational α for which this system is minimal and

the Lebesgue measure is not uniquely ergodic. We may describe Veech's dynamical

system by a �ow on a surface arising from a billiard. Consider billiards in the table

formed by a 1
2
×1 rectangle with a horizontal barrier of length α with one end touching

at the midpoint of a vertical side. We can identify the top half of the table as the

positive side and the bottom half as the negative side.
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Figure 1: A Billiard table Bα with a barrier of length α.

A standard unfolding of this billiard table is shown in Figure 2. We can view the

new �gure as having two (identi�ed) barriers of length 2α.

Figure 2: Unfolding of Billiard Table Bα
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(See [6]) If we consider the billiard �ow in this rectangle with direction θ, there

is an unfolding of this billiard such that the restriction of the �ow to the map of

�rst return to the horizontal barrier is equivalent to the function described in the

examples given by Veech. In [4], Cheung, Hubert, and Masur showed that if we �x

the parameter α then the dimension of the set of all θ for which this �ow is not ergodic

is either 0 or 1
2
. Speci�cally, Cheung, Hubert, and Masur show that the dimension is

1
2
if and only if ∑

k∈N

log log qk+1

qk
<∞

where {qk}k∈N is the sequence of denominators of the continued fraction representation

of α. Our goal is to consider what happens in the case in which we �x θ and allow α

to vary.

Moreover, the sets K1 (θ) and K0 (θ) are known to give information (see [3]) about

the dynamics of Veech's examples described above.

2 UPPER BOUND ON HAUSDORFF DIMENSION

For A ⊂ Rn, we denote by HdimA the Hausdor� dimension of A (see [4]). In Section

2.1 we give an upper bound for HdimK0 (θ) by applying what Cheung [2] has de�ned

as a self-similar covering to subsets which we call Ki
0 (θ) of K0 (θ). In particular, the

self-similar covering will give an upper bound for HdimKi
0 (θ), and we show that this

upper bound is also an upper bound for HdimK0 (θ).

The following de�nition is motivated by the fact that (i) Veech showed in [7] that

if θ has bounded partial quotients (i.e., supj∈N aj <∞) then HdimK0 (θ) = 0, and
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(ii) Lothar Narins conjectured that HdimK1 (θ) = 1 when aj →∞.

De�nition. Let M ∈ N. An irrational θ with unbounded partial quotients is divergent

relative to [1,M ] if the sequence of partial quotients formed by the terms that are

greater than M diverges to ∞.

If θ is divergent relative to [1,M ], de�ne

κθ := {ki : aki+1 > M}
k0 := minκθ

Theorem 1. Let θ be divergent relative to [1,M ], and let (ki)
∞
i=0 enumerate the values

of k satisfying ak+1 > M . Then

HdimK0 (θ) ≤ lim sup
i→∞

log aki+1

log nki+1
− log nki

(2)

2.1 Reduction

We reduce computing an upper bound of HdimK0 (θ) directly by introducing new

sets Ki
0 (θ) for nonnegative integers i. We will show that this su�ces for �nding an

upper bound of HdimK0 (θ).

De�nition. Suppose θ is divergent relative to [1,M ].

Ki
0 (θ) :=

{
〈m; b1, b2, . . .〉θ ∈ K0 (θ) : j > ki ⇒ |bj|nj ‖njθ‖ <

1

4M

}
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The sets Ki
0 (θ) are nonempty for all su�ciently large i since, by de�nition of

K0 (θ),

lim
j→∞
|bj|nj ‖njθ‖ = 0

Further, the next three lemmas along with the fact that we can �nd an upper bound

for HdimKi
0 (θ) that does not depend on i will furnish an upper bound for HdimK0 (θ).

Lemma 1.

K0 (θ) ⊂
∞⋃
i=0

Ki
0 (θ)

Proof. If y ∈ K0 (θ), then there is a sequencem, b1, b2, . . . such that y = 〈m; b1, b2, . . .〉θ,

where bjnj ‖njθ‖

→ 0. Hence, there is an i for which j > ki implies bjnj ‖njθ‖ < 1
4M

. Therefore

y ∈ Ki
0 (θ).

�

Lemma 2. (Countable Stability)

Hdim
∞⋃
i=0

Ki
0 (θ) = sup

{
HdimKi

0 (θ) : i ≥ 0
}

Proof. For any set F ⊂ Rn and s ≥ 0, denote by Hs (F ) the s-dimensional Hausdor�

measure of F (see [5]). HdimKi
0 (θ) ≤ Hdim

⋃
iK

i
0 (θ) for each i, so supiHdimK

i
0 (θ) ≤
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Hdim
⋃
iK

i
0 (θ). Conversely, let s = supiHdimK

i
0 (θ) . It su�ces to show

Hs+ε
⋃
iK

i
0 (θ) = 0 when ε > 0. Let δ > 0. For each i we can cover Ki

0 (θ) by intervals

Aij such that the sum of their radii by the power s + ε is less than 2−iδ. The union

of all intervals Aij , over i and j, covers
⋃
iK

i
0 (θ) and the sum of their radii raised by

the power s+ ε is less than δ. Therefore, Hs+ε
⋃
iK

i
0 (θ) = 0.

�

Lemma 3. There exists an i0 such that if j ≥ ki0, j 6∈ κθand |bj|nj ‖njθ‖ < 1
4M

, then
bj = 0.

Proof. Take i0 large enough such that ki0 ≥ min kθ. Since j 6∈ κθ, aj+1 ≤M . Hence

1

4M
> |bj|nj ‖njθ‖

>
|bj|nj
2nj+1

>
|bj|

4aj+1

Hence, aj+1 > M |bj|. Since aj+1 < M , bj = 0.

�

A consequence of Lemma 3 is x ∈ Ki0
0 (θ) has a θ−expansion 〈m; b1, b2, . . .〉 such

that for all j > ki0 either aj+1 > M or bj = 0.



8

2.2 Speci�cation of Self-Similar Cover

Given |bi| ≤ ai+1 and an even b satisfying |b| ≤ ak+1, de�ne by

I (m; b1, b2, . . . , bk−1, b)

the interval of length 8
nk

centered at

mθ +
k−1∑
j=1

bj ‖njθ‖+ b ‖nkθ‖

Lemma 4. x ∈ I (m; b1, . . . bk) for any x ∈ K0 (θ).

Proof. Let x = 〈m; b1, . . .〉θ ∈ K0 (θ). Since θ is between mk
nk

and mk+1

nk+1
, it follows

that
∣∣∣mknk − θ∣∣∣ ≤ ∣∣∣mknk − mk+1

nk+1

∣∣∣. Multiplying by nk gives |mk − nkθ| ≤
∣∣∣mk − nk mk+1

nk+1

∣∣∣.
Therefore,

‖nkθ‖ ≤ |mk − nkθ|

≤
∣∣∣∣mk − nk

mk+1

nk+1

∣∣∣∣
=

1

nk+1

We also note that since nk+2 > 2nk we have 1
nk+1

> 2i

nk+(2i+1)
and 1

nk+2
> 2i

nk+(2i+2)
.

Therefore,
∑∞

i=0
1

nk+(2i+1)

<
∑∞

i=0
1

2ink+1
, which is a geometric series that simpli�es to 2

nk+1
. Similarly,

∑∞
i=1

1
nk+(2i)

<

2
nk+2

.
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Without loss of generality, suppose m = 0. Then∣∣∣∣∣x−
k∑
i=1

bi ‖niθ‖

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

j=k+1

bj ‖njθ‖

∣∣∣∣∣
≤

∞∑
j=k+1

|bj| ‖njθ‖

≤
∞∑

j=k+1

|bj|
nj+1

≤
∞∑

j=k+1

aj+1

nj+1

≤
∞∑

j=k+1

1

nj

=
∞∑
i=0

1

nk+(2i+1)

+
∞∑
i=1

1

nk+2i

<
2

nk+1

+
2

nk+2

≤ 4

nk+1

Therefore, x ∈ I (m; b1, . . . bk).

�

De�nition. (Section 3 of [2]) Let X be a metric space and J a countable set. Given

σ ⊂ J × J and α ∈ J we let σ (α) denote the set of all α′ ∈ J such that (α, α′) ∈ σ.

We say a sequence (αj)j∈N of elements in J is σ-admissible if αj+1 ∈ σ (αj) for all

j ∈ N; and we let Jσ denote the set of all σ-admissible sequences in J. By a self-

similar covering of X we mean a triple (B, J, σ) where B is a collection of bounded

subsets of X, J a countable index set for B, and σ ⊂ J × J such that there is a map

E : K0 (θ) → Jσ that assigns to each x ∈ X a σ-admissible sequence
(
αxj
)
j∈N such

that for all x ∈ X
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(i)
⋂∞
j=1B

(
αxj
)

= {x}, and

(ii) diam B
(
αxj
)
→ 0 as j →∞, where B (α) denotes the element of B indexed by α.

2.3 A Self-similar covering of Ki0
0 (θ)

We have access to a self-similar covering of Ki0
0 (θ). De�ne

J :=

{
(m; b1, b2, . . . , bk−1) : m ∈ Z, k ∈ κθ, bj ∈ Z (1 ≤ j ≤ k) , |bj|≤ aj+1,

if and bj = 0 if both ki0 < j < k, j 6∈ κθ
}

B := {I (β) : β ∈ J}

and de�ne σ ⊂ J × J such that for each αki = (m; b1, b2, . . . , bki−1) ∈ J we have

σ (αki) =
{(
m; b1, b2, . . . , bki+1−2, b

)
: |b| ≤ aki+1

}
1Let Jσ denote the set of all σ-admissible sequences in J. By Lemma 4 we can

de�ne

E : K0 (θ) → Jσ

x 7→
(
αxj
)∞
j=0

where x ∈ I (αj) = I (m; b1, . . . , bj−1) ∈ J0 for each αj ∈
(
αxj
)
. Suppose x ∈ Ki0

0 (θ).

Our triple satis�es (i) of the de�nition of a self-similar covering; apply Lemma 4 to

1As mentioned immediately after Theorem 3.1 of [2], we can take elements of B to
be subsets of the ambient space X.
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show x ∈ I (βj) for all βj ∈ J0. Since limj→∞ diam I
(
αxj
)

= 0,
⋂∞
j=0 I

(
αxj
)

= {x} .

Thus, (ii) is also satis�ed.

De�ne

Ei :=
⋃

I (m; b1, . . . , bki−1)

such that the union is over all �nite sequences m, b1, . . . , bki−1, where ki ∈ κθ and

|bj| ≤ aj+1 for each j, and de�ne

E :=
∞⋂
i=0

Ei

2.4 Calculation

In this section we give an upper bound on HdimKi0
0 (θ). The following lemma is a

direct consequence of the de�nition of σ.

Lemma 5. Let α ∈ J and k = |α|.

#σ (α) ≤ ak+1 (3)

Proof. Let α be a sequence in J of length ki. Then α = (m; b1, . . . , bki−1) where both

j > ki0 and j 6∈ κθ imply bj = 0. Since |α| = k, α corresponds to an interval belonging

to Ei. Hence, the centers determined by the children of the intervals comprising Ei

are determined by all even integers bk satisfying bk ≤ aki+1.

�
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For s ≥ 0, since the value of |I (β)| does not depend on the choice of β ∈ σ (α), a

direct consequence of equation (3) is

∑
β∈σ(α)

(
|I (β)|
|I (α)|

)s
= #σ (α)

(
|I (β) |
|I (α) |

)s
(4)

Further, for β ∈ σ (α)

#σ (α)

(
|I (β) |
|I (α) |

)s
≤ 1 ⇐⇒ #σ (α)

(
nki
nki+1

)s
≤ 1

The critical value of s is s = log#σ(α)
lognki+1

−lognki
. Let ε > 0, and let s′ = s+ ε. Then

∑
β∈σ(α)

(
|I (β) |
|I (α) |

)s′
≤ 1 ⇐⇒

(
nki
nki+1

)s′
#σ(α) ≤ 1 (by (4))

⇐⇒
(
nki
nki+1

)ε
≤ 1

Theorem 5.3 of [1] implies HdimK0 (θ) ≤ s′. Since ε can be arbitrarily small, we

have HdimK0 (θ) ≤ s. Hence

HdimK0 (θ) ≤ lim sup
i→∞

log #σ (α)

log nki+1 − log nki

= lim sup
i→∞

log aki+1

log nki+1
− log nki

(by (3))

�
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3 A NONTRIVIAL EXAMPLE OF θ SATISFYING HdimK0 (θ) = 0

In [7], Veech showed that the Hausdor� dimension of Ki (θ) vanishes when θ has

bounded partial quotients. Using our upper bound formula (2), we give an example

for which supj aj = ∞ and HdimK0 (θ) = 0. Let 0 < δ ≤ 1 be given and �x M =⌈
2

1
δ

⌉
. We specify the continued fraction representation of θ recursively. We choose

a1, a2, . . . , ak0 = M , where k0 is the smallest index for which nδk0 > max
{

2M, 1
2δ−1

}
.

Note that there exists an integer in between nδk0 and 2δnδk0 since nδk0
(
2δ − 1

)
> 1.

Choose ak0+1 ∈ Z such that nδk0 < ak0+1 < 2nδk0 . Recursively, given ki, de�ne

ki+1 := ki + 1 +

⌈
δi log nki

logM

⌉
(5)

set aki+2 = aki+3 = · · · = aki+1
= M , and choose aki+1 such that nδki < aki+1 < 2nδki .

This completes the recursive de�nition of the sequence (aki)i≥0. Moreover, a direct

consequence of the de�nition of (5) is

Mki+1−ki−1 ≥ nδiki (6)

Claim. Under the above construction, θ is divergent relative to [1,M ].

Proof. By construction of (aki+1)i≥0 , we have, for each i ≥ 0, aki+1 > M and nδki <

aki+1 < 2nδki . Therefore aki+1 diverges to ∞.

�

Theorem 2. Let θ be constructed as above. Then HdimK0 (θ) = 0.
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Proof.

nki+1
> aki+1

nki+1−1

= Mnki+1−1

> Maki+1−1nki+1−2

= M2nki+1−2

...

= Mki+1−ki−1nki

> nδikinki (by (6))

= nδi+1
ki

Therefore, log nki+1
> (δi+ 1) log nki , and this implies

lim
i→∞

log nki+1

log nki
=∞ (7)

Since θ is half-divergent,

HdimK0(θ) ≤ lim sup
i→∞

log aki+1

log nki+1
− log nki

(by (2))

≤ lim sup
i→∞

log 2nδki
log nki+1

− log nki

≤ lim sup
i→∞

δ log nki + log 2

log nki+1
− log nki

= lim sup
i→∞

δ
lognki+1

lognki
− 1

= 0 (by (7))

�
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4 EXAMPLE OF θ FOR WHICH HdimK1 (θ) = 1

4.1 Falconer's Lower Bound Formula

(See [4]) Let [0, 1] = F0 ⊃ F1 ⊃ F2 ⊃ . . . be a decreasing sequence of sets, with

each Fk a union of a �nite number of disjoint closed intervals (called kth level basic

intervals), which each interval of Fk containing at least two intervals of Fk+1, and the

maximum length of kth level intervals tending to 0 as k →∞. Then the set

F =
∞⋂
k=0

Fk

is a totally disconnected subset of [0, 1]. The condition needed to apply Falconer's

lower bound formula is

(∗) Each (j − 1)th level interval contains at least mj ≥ 2 jth level intervals

(j = 1, 2, . . .) which are separated by gaps of at least γj, where 0 < γj+1 < γj for

each j.

Falconer's lower bound formula is

HdimF ≥ lim inf
k→∞

log (m0m1 · · ·mj)

− log (mj+1γj+1)
(8)

4.2 Lower Bound for HdimK1 (θ)

Fix δ ∈ (0, 1) and ε ∈ (0, δ). For the remainder of Section 4, let θ be an element

for which there exists a k0 su�ciently large so that nδ−εk0
≥ 3, nεk0 ≥ 9 and for all

k ≥ k0, n
δ
k < ak+1 < 2nδk, bk is even and |bk| <

⌊
nδ−εk

⌋
. Our strategy is to
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construct an in�nite family of Cantor sets contained in K1 (θ), each of which satis�es

the conditions needed to apply Falconer's lower bound formula, allowing us to give

lower bounds of HdimK1 (θ) arbitrarily close to 1.

Given |bi| ≤ ai+1, de�ne by

L (m; b1, b2, . . . , bk−1)

or Lk−1 the interval of length ‖nk−1θ‖ concentric with I (m; b1, . . . , bk−1). We require

that for each k the length of the gaps between the intervals Lk is constant. Hence,

we have the following lemma.

Lemma 6. The gaps between consecutive children intervals of Lk are of length ‖nkθ‖.

Proof. The distance between the centers of adjacent intervals of Lk+1 is 2 ‖nkθ‖.

Between these centers is the gap between them as well as two half intervals of Lk+1.

Hence, the size of the gap is ‖nkθ‖.
�

The following lemma gives a su�cient condition for Lk+1 ⊂ Lk.

Lemma 7. Suppose we are given m, b1, . . . , bk−1, b. If |b| ≤ ak+1

8
, then

L (m; b1, . . . , bk−1, b) ⊂ L (m; b1, . . . , bk−1)

Proof. We may suppose ak+1 ≥ 9 since the claim is vacuously true otherwise. Let

y ∈ L (m; b1, . . . , bk−1, b), and let x be the center of the corresponding parent interval
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L (m; b1, . . . , bk−1). Let us call x′ the center of the interval L (m; b1, . . . , bk−1, b).

Then

|x− y| ≤ |x′ − x|+ |x′ − y|

≤ |b| ‖nkθ‖+
‖nkθ‖

2

≤
ak+1

8
+ 1

2

nk+1

<

(ak+1

4
− 1

2

)
+ 1

2

nk+1

(since ak+1 > 4)

=
ak+1

4nk+1

<
ak+1

4ak+1nk

=
1

4nk

<
‖nk−1θ‖

2

�

The following result was anticipated by Lothar Narins.

Theorem 3. The number θ, as constructed in 4.2, satis�es the following:

HdimK1 (θ) = 1

Proof. De�ne

Fj :=
⋃

L (m; b1 . . . , bk0+j−1)

where the union is over all �nite sequences such that m = b1 = · · · = bk0−1 = 0. If

k ≥ k0, then
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|bk| ≤
⌊
nδ−εk

⌋
≤ nδ−εk

=
nδk
nεk

<
ak+1

8

so that, by Lemma 7,

Fj+1 ⊂ Fj

for j ≥ 0.

De�ne

F (k0, ε) :=
∞⋂
j=0

Fj

Lemma 8. F (k0, ε) ⊂ K1 (θ)

Proof. If y ∈ F (k0, ε), then we have a sequence of the form b1, b2, . . . such that y =

〈m; b1, b2, . . . , bk0 , bk0+1, . . .〉θ, where b1 = · · · = bk0−1 = 0 and, by construction, each

bk is even. We show that y satis�es the constraints imposed on elements of K1 (θ).

∞∑
j=1

|bj|nj ‖njθ‖ ≤
∞∑
j=1

nδ−ε+1
j

nj+1

≤
∞∑
j=1

nδ−ε+1
j

n1+δ
j

≤
∞∑
j=1

1

nεj
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Using the Ratio Test on the latter series, we have

lim
j→∞

nεj
nεj+1

≤ lim
j→∞

(
nj

aj+1nj

)ε
≤ lim

j→∞

1

aεj+1

= 0

= 0

Therefore,
∑∞

j=1 |bj|nj ‖njθ‖ <∞. Hence y ∈ K1 (θ).

�

For convenience, de�ne kj := k0 + j. We show that F (k0, ε) satis�es (∗). Denote

by mj the number of children intervals Lkj of F so that mj counts the number of

even integers b satisfying |b| <
⌊
nδ−εkj

⌋
, so that

mj =
⌊
nδ−εkj

⌋
Denote by γj the length of the gaps between children intervals of Lkj so that, by

Lemma 6,

γj =
∥∥nkjθ∥∥

From basic continued fraction theory,

1

2nk+1

< ‖nkθ‖ <
1

nk+1

(9)

Since we have 1
nkj+2

< 1
2nkj+1

for each j, we have 0 < γkj+1 < γkj for each j. By (9),

limj→∞ γj = 0. It is the case that each interval L
(
m; b1, . . . , bkj−1

)
contains at least

3 intervals of Lkj and the gaps γj decrease monotonically to 0 as j →∞. Hence, the

conditions for Falconer's lower bound formula (inequality 4.7 of [4]) are satis�ed.
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To simplify our calculation of the lower bound of HdimF (k0, ε), we use the fact

that k ≥ k0 implies

nk+1 < (ak+1 + 1)nk

< 3n1+δ
k

Taking log of both sides of the expression nk+1 < 3n1+δ
k gives

log nk+1 <

(
1 + δ +

log 3

log nk0

)
log nk (10)

Further,

mj+1 =
⌊
nδ−εkj+1

⌋
>

nδ-εkj+1

2

and

γj+1 =
∥∥nkj+1

θ
∥∥

>
1

2nkj+1+1

(by (9))

>
1

4akj+1+1nkj+1

(since nk+1 < 2ak+1nk)

>
1

8n1+δ
kj+1

imply

mj+1γj+1 >
1

16n1+ε
kj+1

(11)
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Using Falconer's lower bound (8) gives

HdimF (k0, ε) ≥ lim inf
j→∞

log (m0 · · ·mj)

− log (mj+1γj+1)

≥ lim inf
j→∞

(δ − ε)
(
log nk0 + log nk1 + · · ·+ log nkj

)
(1 + ε) log nkj+1

≥ lim inf
j→∞

δ − ε
1 + ε

 1

1 + δ + log 3
lognk0

+ · · ·+ 1(
1 + δ + log 3

lognk0

)j+1



= lim inf
j→∞

δ − ε
1 + ε

(
1

1 + δ + log 3
lognk0

)
1−

(
1

1+δ+ log 3
lognk0

)j+1

1− 1

1+δ+ log 3
lognk0


=

δ − ε

(1 + ε)
(
δ + log 3

lognk0

)
HdimF (k0, ε)→ 1 as ε→ 0, k0 →∞. Therefore, HdimK1 (θ) = 1.

�
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5 HdimKi (θ) = δ

Theorem 4. For any δ ∈ [0, 1] there is a θ satisfying HdimKi (θ) = δ.

The cases δ = 0 and δ = 1 are handled by Theorem 2 and Theorem 3, respectively.

Let us choose δ ∈ (0, 1). Our strategy is to construct a half-divergent θ in terms of δ

in a particular way which gives

δ ≤ HdimK1 (θ) ≤ HdimK0 (θ) ≤ δ

Proof. Suppose M ∈ N≥3. We construct a θ divergent relative to [1,M ]. In what

follows we construct integers ak in terms of the indices ki by taking
3 ≤ ak+1 ≤M if k 6= ki,

nδk < ak+1 < 2nδk if k = ki

(12)

Choose a1, a2, . . . , ak0 ∈ [3,M ], where k0 is large enough so that nδk0 > M . With this

choice of k0, ak+1 > M when k = ki; therefore, ak+1 ∈ [3,M ] if and only if k 6= ki.

Suppose we are given ki and that a1, a2, . . . , aki , n1, n2, . . . , nki+1 are de�ned according

to (12). Choose ki+1 to be the smallest k ≥ ki + 1 such that


nk < n2

ki
, and set ak+1 ∈ [3,M ] if k < ki+1,

nk ≥ n2
ki
, and set ak+1 ∈

(
nδk, 2n

δ
k

)
if k = ki+1
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By this recursive de�nition, nki+1
≥ n2

ki
and nki+1−1 < n2

ki
. If ki+1 = ki + 1, then

nki+1
= aki+1nki + nki−1

< 2aki+1nki

< 4n1+δ
ki

< (M + 1)n2
ki

If ki+1 > ki + 1, then ki+1 is not of the form kj + 1 for any j > i; for if j > i, then

kj + 1 > kj ≥ ki+1. Therefore, in this case, we have aki+1
∈ [3,M ], so

nki+1
= aki+1

nki+1−1 + nki+1−2

<
(
aki+1

+ 1
)
nki+1−1

< (M + 1)n2
ki

Therefore,

n2
ki
≤ nki+1

< (M + 1)n2
ki

(13)

and

nδki < aki+1 < 2nδki

Further, it will be used in the upper and lower bound calculations that (13) implies

lim
j→∞

log nkj
log nkj+1

=
1

2
(14)
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5.1 Upper Bound

As construction in Section 5, θ is divergent relative to [1,M ] since the subsequence

(aki+1)i≥0 of terms of (ak)k≥1 which are larger than M also satisfy nδki < aki+1 < 2nδki .

Therefore, limi→∞ aki+1 =∞. Hence,

HdimK0 (θ) ≤ lim sup
j→∞

log akj+1

log nkj+1
− log nkj

(by (2))

≤ lim sup
j→∞

log nδkj + log 2

log nkj+1
− log nkj

= lim sup
j→∞

δ
lognkj

lognkj+1

1−
lognkj

lognkj+1

= δ (by (14))

Therefore, HdimK0 (θ) ≤ δ.

5.2 Lower Bound

Let ε ∈ (0, 1). Choose k′0 ≥ k0 su�ciently large such that ki ≥ k′0 implies aεki+1 <

aki+1

8
. De�ne

Fj :=
⋃

L
(
m; b1, b2, . . . bk′0−1, . . . , bkj−1

)
to be the union over all �nite sequences of even terms b1, . . . bkj−1 such that if k =

ki ≥ k′0 then bk is even and satis�es |bk| <
⌊
aεk+1

⌋
, otherwise bk = 0. WLOG, let

m = 0. De�ne
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Fε = F (k′0, ε) :=
∞⋂
j=0

Fj

Lemma 7 implies Fj+1 ⊂ Fj for j ∈ N since if ki ≥ k′0, then

|bki | <
⌊
aεki+1

⌋
≤ aεki+1

<
aki+1

8

Lemma 9. Fε ⊂ K1 (θ)

Proof. Let y ∈ Fε. Then we are given a sequence of the form b1, b2, . . . such that

y =
〈
m; b1, b2, . . . , bk′0 , bk′0+1, . . .

〉
θ
, |bk| is even and satis�es |bk| <

⌊
aεk+1

⌋
if k = ki > k′0

and bk = 0 otherwise. Further,

∞∑
j=1

|bj|nj ‖njθ‖ ≤
∞∑
j=1

aεj+1nj

nj+1

≤
∞∑
j=1

aεj+1nj

aj+1nj

=
∞∑
j=1

1

a1−εj+1

≤
∞∑
j=1

1

n
δ(1−ε)
j

�
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Proof. Using the Ratio Test on the latter series, we have

lim
j→∞

n
(1−ε)δ
j

n
(1−ε)δ
j+1

≤ lim
j→∞

n
(1−ε)δ
j

n
(1−ε)δ
j+1

≤ lim
j→∞

1

a
(1−ε)δ
j+1

= 0

Therefore,
∑∞

j=1 |bj|nj ‖njθ‖ <∞. Hence y ∈ K1 (θ).

�

De�ne

Mj :=
⌊
aεkj+1

⌋
so that Mj is a lower bound on the number of intervals in Fj+1 contained in intervals

of Fj.

De�ne

Γj :=
∥∥nkjθ∥∥

so that, by Lemma 6, Γj is a lower bound on the gaps between the intervals of Fj+1.

Since we have 1
nkj+2

< 1
2nkj+1

for each j, we have 0 < Γj+1 < Γj for each j. Since

1
2nkj+1

< Γj <
1

nkj+1
for each j, limj→∞ Γj = 0. It is the case that each interval

L
(
m; b1, . . . , bkj−1

)
contains at least 3 intervals of Fkj+1

and the gaps Γj decrease

monotonically to 0 as j →∞. The conditions for Falconer's lower bound formula are

satis�ed.
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To simplify our calculation of the lower bound of HdimFε, we use the fact that

Γj+1 =
∥∥nkj+1

θ
∥∥

>
1

2nkj+1+1

(by (9))

>
1

2
(
2akj+1+1nkj+1

) (nk+1 < 2ak+1nk)

>
1

8n1+δ
kj+1

and

Mj+1 =
[
aεkj+1+1

]
≥

aεkj+1+1

2

>
nδεkj+1

2

imply

Mj+1Γj+1 >
1

16n1+δ−δε
kj+1

(15)

Using Falconer's lower bound gives

HdimF ≥ lim inf
j→∞

log (M0 · · ·Mj)

− log (Mj+1Γj+1)

≥ lim inf
j→∞

ε
(
log ak0+1 + log ak1+1 + · · ·+ log akj+1

)
(1 + δ − δε) log nkj+1

(by (15))

≥ δε

1 + δ − δε
lim inf
j→∞

(
log nk0 + log nk1 + · · ·+ log nkj

log nkj+1

)
≥ δε

1 + δ − δε
lim inf
j→∞

(
1

2
+

1

22
+ · · ·+ 1

2j+1

)
(by (14))

=
δε

1 + δ − δε
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HdimF (k′0, ε)→ δ as ε→ 1 . Therefore, HdimK1 (θ) ≥ δ.

�



29

References

[1] Y. Cheung. Hausdor� Dimension of the Set of Points on Divergent Trajectories of

a Homogeneous Flow on a Product Space. Ergodic Theory and Dynamical Systems,

27 (2007), 65-85.

[2] Y. Cheung. Hausdor� Dimension of the Set of Singular Pairs . Annals of Mathe-

matics, 173 (2011), 127-167.

[3] Y. Cheung, A. Eskin. Slow Divergence and Unique Ergodicity . Fields Institute

Communications, 51 (2007), 213-222.

[4] Y. Cheung, P. Hubert, and H. Masur. Dichotomy for the Hausdor� Dimension of

the Set of Nonergodic Directions. Inventiones, 183 (2001), 337-383.

[5] K. Falconer. Fractal Geometry: Mathematical Foundations and Applications.

Chichester: John Wiley and Sons, 1990. Print.

[6] H. Masur and S. Tabachnikov. Rational Billiards and Flat Surfaces . Handbook of

Dynamical Systems, Vol. 1A (2002), 1015-1089.

[7] W. Veech. Strict Ergodicity in Zero Dimensional Dynamical Systems and the

Kronecker-Weyl Theorem Modulo 2 . Transactions of the American Mathematical

Society, 140 (1969), 1-33.


