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We construct a Poincaré section for the horocycle flow on the modular surface SL(2,R)/SL(2,Z), and study the

associated first return map, which coincides with a transformation (the BCZ map) defined by

Boca-Cobeli-Zaharescu [8]. We classify ergodic invariant measures for this map and prove equidistribution of periodic

orbits. As corollaries, we obtain results on the average depth of cusp excursions and on the distribution of gaps for

Farey sequences and slopes of lattice vectors.

1 Introduction

Let X2 = SL(2,R)/SL(2,Z) be the space of unimodular lattices in R2. X2 is a non-compact finite-volume (with
respect to Haar measure on SL(2,R)) homogeneous space. X2 can also be viewed as the unit-tangent bundle
to the hyperbolic orbifold H2/SL(2,Z). The action of various one-parameter subgroups of SL(2,R) on X2 via
left multiplication give several important examples of dynamics on homogeneous spaces, and have close links to
geometry and number theory.

For example, the action of the subgroup

A :=

{
gt =

(
et/2 0

0 e−t/2

)
: t ∈ R

}

yields the geodesic flow on X2, whose orbits are hyperbolic geodesics when projected to H2/SL(2,Z). This flow
can be realized as an suspension flow over (the natural extension of) the Gauss map G(x) =

{
1
x

}
, and this

connection can be exploited to give many connections between the theory of continued fractions and hyperbolic
geometry (see the beautiful articles by Series [33] or Arnoux [1] for very elegant expositions).

In this paper, we study the horocycle flow, that is, the action of the subgroup

N =

{
hs =

(
1 0
−s 1

)
: s ∈ R

}
.

The main result (Theorem 1.1) of this paper displays the horocycle flow as a suspension flow over the BCZ
map, which was constructed by Boca-Cobeli-Zaharescu [8] in their study of Farey fractions. Equivalently, we
construct a transversal to the horocycle flow so that the first return map is the BCZ map. This enables us to
use well-known ergodic and equidistribution properties of the horocycle flow to derive equivalent properties for
the BCZ map (in particular that it is ergodic, zero entropy, and that periodic orbits equidistribute), and give a
unified explanation of several number-theoretic results on the statistical properties of Farey gaps. We also give
a ‘piecewise-linear’ description of the cusp excursions of the horocycle flow, and derive several new results on
the geometry of numbers relating to gaps of slopes of lattice vectors.

1.1 Plan of paper

We describe the organization of the paper, and also give a guide for readers.
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1.1.1 Organization

This paper is organized as follows: in the remainder of the introduction (§1), we state our results: in §1.3, we
describe the transversal to the horocycle flow, and state Theorem 1.1. In §1.4, we discuss the ergodic properties
of the BCZ map (§1.4.2) and the structure and equidistribution of periodic orbits (§1.4.3). A piecewise-linear
description of horocycle cusp excursions is given in §1.5; a unified approach to Farey statistics is described in
§1.6; and a similar approach to statistics of gaps in slopes of lattice vectors is the subject of §1.7. In §2, we prove
Theorem 1.1, and show how to describe it using Euclidean and hyperbolic geometry. The structure of periodic
orbits is the subject of §4; and in §5, these structure results are used to obtain equidistribution properties and
the corollaries on Farey statistics in §5.2. §3 contains the proof of ergodicity and the calculation of entropy of
the BCZ map. We prove our results on cusp excursions in §6, and in §7 we prove our results on geometry of
numbers. Finally, in §8, we outline some questions and directions for future research.

1.1.2 Readers guide

Since this paper touches on several different topics, it can be read in several different ways. We suggest different
approaches for the ergodic-theoretic and number-theoretic minded readers. We recommend that the ergodic-
theoretic reader start with sections §1.3 and §1.4 (and perhaps §1.5), and follow it with §2, §3 and §6 before
exploring the more number theoretic parts of the paper. The number-theoretic reader should also start with
§1.3 and §1.4, but then may be more intrigued by the results of §1.4.3, §1.6, and §1.7 and their proofs in §4,§5.2,
and §7 respectively.

1.2 Acknowledgments and Funding

The original motivation for this project was the study of cusp excursions for horocycle flow on X2 (as described
in §1.5). We developed the first return map T as a technical tool in order to study these excursions. Later, the
first-named author was attending a talk by F. Boca in which the map T was written down in the context of
studying gaps in angles between hyperbolic lattice points. After many invaluable and illuminating conversations
with F. Boca and A. Zaharescu, we understood the deep connections they had developed between orbits of this
map and the study of Farey sequences. It is a pleasure to thank them for their insights and assistance. We would
also like to thank Jens Marklof for numerous helpful discussions and insightful comments on an early version of
this draft.

We thank the organizers of the Summer School and Conference on Teichmüller dynamics in Marseilles in
June 2009, when this project was originally developed. In addition, J.S.A. would like to thank San Francisco State
University for its hospitality. J.S.A. supported by National Science Foundation grant number DMS-1069153. Y.C.
supported by National Science Foundation CAREER grant number DMS-0956209.

1.3 Description of transversal

Recall that X2 can be explicitly identified with the space of unimodular lattices via the identification

gSL(2,Z)↔ gZ2.

Let

P =

{
pa,b =

(
a b
0 a−1

)
: a ∈ R∗, b ∈ R

}
(1.1)

denote the group of upper-triangular matrices in SL(2,R). Let

Ω′ := {pa,bSL(2,Z) : a, b ∈ (0, 1], a+ b > 1} ⊂ X2. (1.2)

We will use Ω to denote the set

{(a, b) ∈ R2 : a, b ∈ (0, 1], a+ b > 1} ⊂ R2.

In §2, we will show that Ω′ can be viewed as the set of lattices with a horizontal vector of length at most 1, can
also be identified with the subset

{
z = x+ iy ∈ H2 : − 1

2 < x ≤ 1
2 , y > 1,

}
⊂ H2 of the upper-half plane. Our

main theorem is that the Ω′ is a Poincaré section for the horocycle flow, and that the first return map is the
BCZ map. We see the space Ω together with the roof in Figure 1.
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Fig. 1. A picture of the suspension space over Ω. Trajectories of the flow are vertical lines. Starting from
(a, b) ∈ Ω, hs trajectories move vertically until they hit the ‘roof’ (at time R(a, b)) upon which they return to
the floor at position T (a, b).

Theorem 1.1. Ω′ ⊂ X2 is a Poincaré section for the action of N on X2. That is, every N -orbit {hsΛ}s∈R
(with the exception of the codimension 1 set of lattices Λ with a length ≤ 1 vertical vector), Λ ∈ X2, intersects
Ω′ in a non-empty, countable, discrete set of times {sn}n∈Z. Given Λa,b = pa,bSL(2,Z), the first return time
R(a, b) = min{s > 0 : hsΛa,b ∈ Ω′} is given by

R(a, b) =
1

ab
. (1.3)

The first return map T : Ω→ Ω defined implicitly by

ΛT (a,b) = hR(a,b)xa,b

is given explicitly by the BCZ map

T (a, b) =

(
b,−a+

⌊
1 + a

b

⌋
b

)
(1.4)

Remarks:

Short periodic orbits We will see below that lattices with a length ≤ 1 vertical vector consist of those whose
horocycle orbits are periodic of period at most 1, and are embedded closed horocycles in H2/SL(2,Z),
foliating the cusp. Thus, from a dynamical point of view, there is no loss in missing them.

Integrability of R A direct calculation shows that
∫

Ω
R2dadb = π2

3 , which is the volume of X2 when viewed

as the unit tangent bundle of H2/SL(2,Z) with respect to the measure dxdydθ
y2 . It is also immediate that

R ∈ Lp(dm) for p < 2, where dm = 2dadb.

1.4 Return map and applications

The BCZ map has proved to be a powerful technical tool in studying various statistical properties of Farey
fractions [5, 8, 10], and the distribution of angles of families of hyperbolic geodesics [11].
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Fig. 2. The Farey triangle Ω =
⋃
k≥1 Ωk
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1.4.1 Tiles and images

We briefly describe the basic structure of the piecewise linear decomposition of T . (1.4) tells us that the map T
acts via

T (a, b) = (a, b)AT
k ,

where the superscript T denotes transpose, and

Ak =

(
0 1
−1 k

)

on the region Ωk := {(a, b) ∈ Ω : κ(a, b) = k}, where κ(a, b) =
⌊

1+a
b

⌋
(see Figure 2 below). Ω1 is a triangle with

vertices at (0, 1), (1, 1), and
(

1
3 ,

2
3

)
; and for k ≥ 2, Ωk is a quadrilateral with vertices at

(
1, 2

k

)
,
(
1, 2

k+1

)
,(

k−1
k+1 ,

2
k+1

)
, and

(
k
k+2 ,

2
k+2

)
. Note that area(Ω1) = 1

6 , andfor k ≥ 2, area(Ωk) = 4
k(k+1)(k+2) = O(k−3) so that

κ ∈ Lp(m) for 1 ≤ p < 2.
The image TΩk is the reflection of Ωk about the line a = b (see Figure 3). However, T is orientation-

preserving, and thus does not act by the reflection. For k = 1, T acts by the elliptic matrix A1, for k = 2 the
parabolic matrix A2, and for k ≥ 3, by the hyperbolic matrices, since trace(Ak) = k.

1.4.2 Ergodic properties of the BCZ map

In [7, §3], Boca-Zaharescu posed a series of questions on the ergodic properties of T :

Question. Is T ergodic (with respect to Lebesgue measure)? Weak mixing? What is the entropy of T?

A corollary of Theorem 1.1 and the ergodicity and entropy properties of the horocycle flow is:

Theorem 1.2. T is an ergodic, zero-entropy map with respect to the Lebesgue probability measure dm = 2dadb.
Moreover, m is the unique absolutely continuous invariant probability measure, and in fact is the unique ergodic
invariant measure not supported on a periodic orbit.

1.4.3 Periodic orbits

The map T has a rich and intricate structure of periodic orbits, closely related to the Farey sequences. A direct
calculation shows that for Q ∈ N the point Λ 1

Q ,1
= p 1

Q ,1
Z2 is hs-periodic with (minimal) period Q2.

Given Q ∈ N, the Farey sequence F(Q) is the collection (in increasing order) of fractions 0 < p
q < 1 with

q ≤ Q. Let N = N(Q) denote the cardinality of F(Q). We write F(Q) = { 0
1 = γ1 < γ2 = 1

Q < . . . < γN}. For

notational convenience, we write γN+1 = 1 = 1
1 . Writing γi = pi

qi
, with qi ≤ Q, we have qi + qi+1 > Q, and

pi+1qi − piqi+1 = 1.
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Fig. 3. The images TΩk
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The following fundamental observation is due to Boca-Cobeli-Zaharescu [8]:

T

(
qi
Q
,
qi+1

Q

)
=

(
qi+1

Q
,
qi+2

Q

)
. (1.5)

The indices are viewed cyclically in Z/NZ. We give a geometric explanation for (1.5) in §4.1 below. Thus, ( 1
Q , 1)

is a periodic point of order N for T . To relate this to the periodic orbit of Λ1, 1
Q

for hs, we first record two simple

observations. First, (
q1

Q
,
q2

Q

)
=

(
1

Q
, 1

)
,

and second,
N∑

i=1

1

qiqi+1
=

N∑

i=1

(γi+1 − γi) = 1

Multiplying both sides by Q2, and applying (1.5), we obtain

N∑

i=1

Q2

qiqi+1
=

N∑

i=1

(
R ◦ T i−1

)( 1

Q
, 1

)
= Q2.

Thus, as we sum the roof function R over the periodic orbit for T , we obtain the length of the associated periodic
orbit for the flow.

We recall Sarnak [32] showed that long periodic orbits for hs (i.e., long closed horocycles) become
equidstributed with respect to µ2, the Haar measure on X2. Our main result on the distribution of periodic
orbits is the following discrete corollary of Sarnak’s result: let ρQ,I denote the probability measure supported
on (a long piece of) the orbit of ( 1

Q , 1): given I = [α, β] ⊂ [0, 1], let NI(Q) := |F(Q) ∩ I|, and define

ρQ,I =
1

NI(Q)

∑

i:γi∈I
δT i( 1

Q ,1).
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If I = [0, 1], we write ρQ,I = ρQ.

Theorem 1.3. For any (non-empty) interval I = [α, β] ⊂ [0, 1], the measures ρQ,I become equidistributed with
respect to m as Q→∞. That is, ρQ,I → m, where convergence is in the weak-∗ topology.

Remark. The case I = [0, 1] of Theorem 1.3 was proven in [27] using different methods. Also, Theorem 1.3 can
be deduced from Theorem 6 in [28], which is proven in the more general context of horospherical flows using a
section that reduces to the same one in Theorem 1.1.

Theorem 1.4. A point (a, b) ∈ Ω is T -periodic if and only if it has rational slope. In particular, the set of
periodic points is dense.

While periodic points are abundant, there are strong restrictions on the lengths of periodic orbits, and the
associated matrices, governed by the relationship between the (discrete) period P (a, b) under T of a point (a, b)
and the (continuous) period s(a, b) of the associated lattice pa,bZ2 under hs. We fix notation: for n ≥ 1, we write

An(a, b) = A
(
Tn−1(a, b)

)
A
(
Tn−2(a, b)

)
. . . A(a, b),

so
Tn(a, b) = (a, b)An(a, b)T.

As a starting point for our observations, note that the diagonal (a, a) ∈ Ω consists of fixed (i.e, period
P (a, a) = 1) points for T , the associated horocycle period is the value roof function R(a, a) = 1

a2 , and the
associated matrix

AP (a,a)(a, a) = A(a, a) = A2 =

(
0 1
−1 2

)

is parabolic. Our main result on periodic points is that appropriate versions of these observations hold for all
(segments of) periodic points.

Theorem 1.5. For any periodic point (a, b) ∈ Ω, we have

P (a, b) = N
(⌊√

s(a, b)
⌋)

.

Thus the set of possible periods is given by the cardinalities {N(Q) : Q ∈ N} of Farey sequences. Moreover, the
matrix

AP (a,b)(a, b) = A
(
TP (a,b)−1(a, b)

)
A
(
TP (a,b)−2(a, b)

)
. . . A(a, b)

associated to the periodic orbit is always parabolic , and in fact constant along the segment{
(ta, tb) : t ∈

(
1
a+b , 1

]}
. Precisely, for k, l ∈ N, k ≤ l relatively prime, and a ∈

(
l
l+r ,

l
l+r−1

]
, 1 ≤ r ≤ k, we have

P

(
a, a

k

l

)
= N(l + r − 1),

and for a ∈ ( l
l+k , 1],

AP(a,a kl )

(
a, a

k

l

)
=

(
1− kl l2

−k2 1 + kl

)
.

1.5 Piecewise linear description of horocycles

In this section, we describe the results that originally motivated this project, on cusp excursions and returns to
compact sets for the horocycle flow. Let ‖.‖ denote the supremum norm on R2. For Λ = gZ2 ∈ X2, define

`(Λ) := inf
0 6=v∈gZ2

‖v‖,

and let α : X2 → R+ be given by

α(Λ) =
1

`(Λ)
.

By Mahler’s compactness criterion, a subset A of X2 is precompact if and only if there is an ε > 0 so that for
all Λ ∈ A,

`(Λ) > ε,
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or, equivalently if α|A is bounded.
Dani [15] showed that for any lattice Λ ∈ X2, the orbit {hsΛ}s≥0 is either closed or uniformly distributed

with respect to the Haar probability measure µ on X2. Thus for an Λ so that {hsΛ}s≥0 is not closed, we have

lim sup
s→∞

α1(hsΛ) =∞

and
lim sup
s→∞

`(hsΛ) = 0.

In fact, this does not require equidistribution but simply density (due to Hedlund [24]). {hsΛ} is closed if and
only if Λ has vertical vectors.

A natural question is to understand the rate at which these excursions to the non-compact part (‘cusp’)
of X2 occur. The first-named author, in joint work with G. Margulis [4], showed that for any Λ ∈ X2 without
vertical vectors,

lim sup
s→∞

logα1(hsΛ)

log s
≥ 1,

and related the precise limit to Diophantine properties of the lattice Λ (see also [2]).
Our results concern the average behavior of all visits to the cusp, as defined by local minima of the

function `Λ(s) = `(hsΛ) (or, equivalently, local maxima of αΛ(s) = α(hsΛ)). The function `Λ(s) is a piecewise-
linear function of s, and helps give a picture of the ‘height’ of the horocycle at time s. In this way it is similar
to work of the second author [14], where a piecewise linear description of diagonal flows on SL(3,R)/SL(3,Z)
was studied.

We also consider returns to the compact part of X2, given by local minima of `Λ(s). Given Λ ∈ X2 so that
{hsΛ}s≥0 is not closed, let {sn} and {Sn} denote the sequences of minima and maxima of `Λ(s) respectively.
To be completely precise, the local minima for the supremum norm occur in intervals, and we take sn to be the
midpoint of the nth interval. Define the averages

aN (Λ) :=
1

N

N∑

n=1

αΛ(sn) ; AN (Λ) :=
1

N

N∑

n=1

αΛ(Sn),

lN (Λ) :=
1

N

N∑

n=1

`Λ(sn) ; LN (Λ) :=
1

N

N∑

n=1

`Λ(Sn).

Theorem 1.6. For any Λ without vertical vectors, we have

lim
N→∞

aN (Λ) = 2 (1.6)

lim
N→∞

lN (Λ) =
2

3
(1.7)

Let M : Ω→ [0, 1] be given by

M(a, b) = max

{
a, b,

1

a+ b

}
(1.8)

Theorem 1.7. For any Λ without vertical vectors, we have

lim
N→∞

AN (Λ) =

∫

Ω

1

M
dm =

2

3

(
13− 8

√
2
)
≈ 1.2 (1.9)

lim
N→∞

LN (Λ) =

∫

Ω

Mdm =
2

3

(
7− 4

√
2
)
≈ .73 (1.10)

Theorem 1.6 and Theorem 1.7 follow from applying the ergodic theorem to the BCZ transformation T : Ω→ Ω.
The assumption that Λ does not have vertical vectors is to ensure it does not have a periodic orbit under
T (equivalently, hs). There is a version of this result for periodic orbits (Corollary 1.12) given in §1.6.5 The
function M gives the maximum of the function ` on a sojourn from the transversal Ω. The limits (1.6) and (1.7)
in Theorem 1.6 are the integrals of the functions g(a, b) = Λ and h(a, b) = 1

Λ over Ω respectively. The times sn
correspond to the return times of {hsΛ} to Ω.
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1.6 Farey Statistics

Theorem 1.3 has several number theoretic corollaries. We record results on spacing and indices of Farey
fractions, originally proved using analytic methods in [5, 8, 20]. Our results give a unified explanation for
these equidistribution phenomena. For similar applications in the context of higher dimensional generalizations
of Farey sequences we refer the reader to [30] and [29].

1.6.1 Spacings and h-spacings

We now fix an interval I ⊂ [0, 1]. It is well known that the Farey sequences FI(Q) become equidistributed in
[0, 1) as Q→∞. A natural statistical question is to understand the distribution of the spacings (γi+1 − γi).
Since there are NI(Q) points, and NI(Q) ∼ |I| 3

π2Q
2, the natural normalization yields the following question:

given 0 ≤ c ≤ d, what is the limiting (Q→∞) behavior of

|{γi ∈ FI(Q) : 3
π2 |I|Q2(γi+1 − γi) ∈ [c, d]}|
NI(Q)

?

Since Q2(γi+1 − γi) =
(
R ◦ T i−1

) (
1
Q , 1

)
, the above quantity reduces to

ρQ,I

(
R−1

([
π2

3|I|c,
π2

3|I|d
]))

. (1.11)

Since R−1
([

π2

3|I|c,
π2

3II|d
])

is compact, we can directly apply Theorem 1.3 to (1.11) obtain a result of

R. R. Hall [20]:

Corollary 1.8. As Q→∞,

|{γi ∈ FI(Q) : 3
π2 |I|Q2(γi+1 − γi) ∈ (c, d)}|

NI(Q)
→ m

(
R−1

(
π2

3|I|c,
π2

3|I|d
))

.

We call this distribution Hall’s distribution. A generalization of this result to higher-order spacings was considered
by Augustin-Boca-Cobeli-Zaharescu [5]. They considered h-spacings: the vector of h-tuples (h ≥ 1) of spacings

vi,h = vi,h(Q) = (γi+j − γi+j−1)
h
j=1 ∈ Rh. Given B =

∏k
i=1 [ci, di], we have, as above,

∣∣{γi ∈ FI(Q) : 3
π2 |I|Q2vi,h ∈ B

}∣∣
NI(Q)

= ρQ,I
(
R−1
h

(
B̃
))
, (1.12)

where Rh : Ω→ Rh is given by

Rh(a, b) =
(
R
(
T j−1 (a, b)

))h
j=1

,

and

B̃ =
π2

3|I|B =

k∏

i=1

[
π2

3|I|ci,
π2

3|I|di
]
.

Applying our equidistribution result to (1.12), we recover Theorem 1.1 of [5]:

Corollary 1.9. As Q→∞,

|{γi ∈ FI(Q) : 3
π2Q

2vi,h ∈ B}|
NI(Q)

→ m
(
R−1
h

(
B̃
))
.
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Fig. 4. The distribution function for the gaps [7, Figure 2]

FAREY FRACTIONS AND TWO-DIMENSIONAL TORI 61

2.3. The consecutive level spacing measures of the Farey sequence.
We are interested in the situation where An = Fn is the set of Farey fractions of
order n. The first level spacings were computed by R. R. Hall.

Theorem 2.1. ([37]) The first consecutive spacing distribution exists and the
limit measure ν(1) is given for every 0 < α < β by

β∫

α

dν(1) = 2Area

{
(x, y) ∈ T :

3

π2β
< xy <

3

π2α

}
.

The density g1 of ν(1) is given by

g1(t) =





0 if t ∈
ˆ
0, 3

π2

˜
,

6
π2t2 log π2t

3 if t ∈
ˆ

3
π2 , 12

π2

˜
,

12
π2t2 log π2t

6

(
1 −

√
1 − 12

π2t

)
if t ∈

ˆ
12
π2 , ∞

´
.

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

Figure 2. The distribution and density functions of ν(1).

For the study of higher level consecutive spacings, it is advantageous to consider
the iterates

T i(x, y) =
(
Li(x, y), Li+1(x, y)

)
, i ≥ 0,

of the area-preserving bijective transformation T of the triangle T defined by (1.2),
and also the map Φh : T → (0, ∞)h defined by

Φh(x, y) =
3

π2

(
1

L0(x, y)L1(x, y)
,

1

L1(x, y)L2(x, y)
, · · · ,

1

Lh−1(x, y)Lh(x, y)

)
.

The higher level consecutive spacing measures are shown to exist and computed in

Theorem 2.2. ([3]) For every h ≥ 2, the h-level consecutive spacing measure
ν(h) of (Fn)n exists and is given, for any box B ⊂ (0, ∞)h, by

ν(h)(B) = 2AreaΦ−1
h (B).

1.6.2 Density of the limiting distribution

Corollary 1.8 allows one to explicitly calculate the density of the limiting distribution of consecutive gaps, that
is, of Hall’s distribution. For d > 0, we define the distribution function Gc(d) to be the asymptotic proportion
of (normalized) gaps of size at most b, that is,

Gc(d) = lim
Q→∞

|{γi ∈ FI(Q) : 3
π2 |I|Q2(γi+1 − γi) ∈ (0, d)}|

NI(Q)
.

By Corollary 1.8, we can write

Gc(d) = m

(
R−1

(
0,

π2

3|I|d
))

.

Since for d < 3|I|
π2 , the curve R(a, b) = π2

3|I|d does not intersect Ω, we have Gc(d) = 0. In particular, the

distribution does not have any support at 0. For d ≥ 3|I|
π2 , Gc(d) > 0. The distribution has another point of

non-differentiability at d = 4 3
π2 , when the curve R(a, b) = 3|I|

π2 d intersects the bottom line a+ b = 1. The picture
of the distribution for |I| = [0, 1) is given in Figure 4, reproduced from [7, Figure 2]. In Figure 5, we display a
picture of the region R−1([c, d]).

Fig. 5. The region R−1([c, d]) ⊂ Ω.
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1.6.3 Indices of Farey fractions

Following [21], we define the index of the Farey fraction γi = ai
qi
∈ F(Q) by

ν(γi) :=
qi−1 + qi+1

qi
=

⌊
Q+ qi−1

qi

⌋
.
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In [8], this was reinterpreted in terms of the map T and the function κ : Ω→ N. Recall that κ(x, y) =
⌊

1+x
y

⌋
.

Precisely, we have

ν(γi) = κ

(
qi−1

Q
,
qi
Q

)
=
(
κ ◦ T i

)( 1

Q
, 1

)
.

Fix a (non-trivial) interval I ⊂ [0, 1), and an exponent α ∈ (0, 2). We consider the average

ρQ,I(κ
α) =

1

NI(Q)

∑

γi∈FI(Q)

ν(γi)
α.

Applying (a strengthening of)Theorem 1.3 to κα (for which we need to estimate the integrals of κα, see §5.2.2),
we obtain a result originally due to Boca-Gologan-Zaharescu [10]:

Corollary 1.10. As Q→∞,

1

NI(Q)

∑

γi∈FI(Q)

ν(γi)
α →

∫

Ω

καdm = 2

∞∑

k=1

kα area(Ωk).

Here Ωk = κ−1(k).

1.6.4 Powers of denominators

We can also obtain general results on sums associated to Farey fractions by applying Theorem 1.3 to various
functions in L1(Ω,m). For example, if we define fs,t : Ω→ C by

fs,t(a, b) = asbt,

for s, t ∈ C with <s,<t > −1, and define

Bs,t := ‖fs,t‖1 =

∫

Ω

fs,t(x, y)dm = 2

(
1

(s+ 1)(t+ 1)
− Γ(s+ 1)Γ(t+ 1)

Γ(s+ t+ 3)

)
,

we obtain results originally due to Hall-Tanenbaum [22].

Theorem 1.11. Fix a non-trivial interval I ⊂ [0, 1). Let s, t ∈ C. Then, if <s,<t > −1,

lim
Q→∞

1

NI(Q)Qs+t

∑

γi∈FI(Q)

qsi q
t
i+1 =

∫

Ω

xsytdm = Bs,t. (1.13)

In particular, for s = 1 and t = 0, we have

lim
Q→∞

1

NI(Q)

∑

γi∈FI(Q)

qi
Q

=

∫

Ω

xdm =
2

3
. (1.14)

In addition, for s = −1 and t = 0,

lim
Q→∞

1

NI(Q)

∑

γi∈FI(Q)

Q

qi
=

∫

Ω

1

x
dm = 2, (1.15)

and for s = t = −1, we have

lim
Q→∞

Q2

NI(Q)

∑

γi∈FI(Q)

1

qiqi+1
=

∫

Ω

1

xy
dm =

π2

3
, (1.16)

which yields the classical result

NI(Q) ∼ |I| 3

π2
Q2.
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1.6.5 Excursions

Finally, we remark that applying the equisitribution result Theorem 1.3 to the functions M (and 1
M ) defined in

(1.8) above, we obtain an amusing statistical result on Farey fractions:

Corollary 1.12. Let I ⊂ [0, 1) be a non-trivial interval. Then

lim
Q→∞

1

NI(Q)

∑

γi∈FI(Q)

min

(
Q

qi
,
Q

qi+1
,
qi + qi+1

Q

)
=

2

3

(
13− 8

√
2
)

lim
Q→∞

1

NI(Q)

∑

γi∈FI(Q)

max

(
qi
Q
,
qi+1

Q
,

Q

qi + qi+1

)
=

2

3

(
7− 4

√
2
)

1.7 Geometry of numbers

Let Λ ∈ X2 be a unimodular lattice, and fix t > 0. Let

St(Λ) = {s1 < s2 < . . . < sn < . . .}

denote the slopes of the lattice vectors in the vertical strip Vt ⊂ R2 given by

Vt := {(x, y) : x ∈ (0, t], y > 0},

written in increasing order. Let

GN,t(Λ) = {sn+1 − sn : 0 ≤ n ≤ N}

denote the sequence of gaps in this sequence, viewed as a set, so |GN,t(Λ)| ≤ N . Our main geometry of numbers
result states that for lattices Λ without vertical vectors, this sequences has the same limiting distribution as the
gaps for Farey fractions, namely, Hall’s distribution. That is:

Theorem 1.13. Suppose Λ does not have vertical vectors, and let 0 ≤ c ≤ d ≤ ∞. Then

lim
N→∞

1

N
|GN,t(Λ) ∩ (c, d)| = 2m(R−1(c, d)).

This result will follow from the application of the Birkhoff ergodic theorem to the orbit of Λ under the BCZ
map, with observable given by the indicator function of the set R−1(c, d). If Λ does have a vertical vector,
and thus a periodic orbit under the BCZ map, we have that for any t > 0, there is an N0 = N0(t) > 0 so that
GN,t(Λ) = GN0,t(Λ) (as sets of numbers) for all N > N0. We can use Theorem 1.3 to obtain the following:

Corollary 1.14. Let 0 ≤ c ≤ d ≤ ∞. Then

lim
t→∞

1

N0(t)
|GN0(t),t(Λ) ∩ (c, d)| = 2m(R−1(c, d)).

2 Construction of Transversal

In this section, we prove Theorem 1.1. We first give an interpretation of the transversal Ω in terms of geometry
of numbers in §2.1; and prove Theorem 1.1 in §2.1.1. We also record some observations on slopes in §2.1.2. We
show how Ω can be interpreted in terms of hyperbolic geometry in §2.2. In §2.3, we show a certain self-similarity
property of the BCZ map T .
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2.1 Short horizontal vectors

Fix t > 0. We say a lattice Λ ∈ X2 is t-horizontally short if it contains a non-zero horizontal vector v = (a, 0)T so
that |a| ≤ t. Note that since Λ is a group, we can assume a > 0. We will call 1-horizontally short lattices simply
horizontally short. We also have the analgous notions of t-vertically and vertically short.To prove Theorem 1.1,
we break it up into several lemmas. Our first lemma is:

Lemma 2.1. Ω = {Λa,b : a, b ∈ (0, 1], a+ b > 1} is the set of horizontally short lattices.

Proof . Since the horizontal vector (a, 0)T is in Λa,b, and a ≤ 1, clearly every lattice in Ω is short. To show the
reverse containment, suppose Λ is short. Then we can write Λ = Λa,b′ = pa,b′Z2, with 0 < a ≤ 1, and b′ 6= 0. Let
m ∈ Z be such that

1− a < ma+ b′ ≤ 1,

i.e., m =
⌊

1−a
b′

⌋
. Set b = ma+ b′. Then, since p1,m ∈ SL(2,Z),

Λ = Λa,b′ = pa,b′Z2 = pa,b′p1,mZ2 = Λa,b = Λa,b ∈ Ω′.

Next, we show that for any (a, b) ∈ Ω, that there is a s ∈ (0,∞) so that hsΛa,b ∈ Ω′, and give a formula for the
minimum s.

Lemma 2.2. Let (a, b) ∈ Ω, so Λa,b ∈ Ω′. Let s0 = R(a, b) = 1
ab . Then hs0Λ ∈ Ω′, and for every 0 < s < s0,

hsΛa,b /∈ Ω′. Furthermore,

hs0Λa,b = ΛT (a,b).

Proof . Since Ω′ consists of horizontally short lattices, we first note that the first time hsΛa,b will have a
horizontal vector is given by the equation

−sb+
1

a
= 0.

Thus we set s0 = 1
ab , and a direct calculation shows

hs0pa,b =

(
a b
− 1
b 0

)
.

Let κ(a, b) = b 1+a
b c. Applying the matrix

(
0 −1
1 κ(a, b)

)
=
(
A(a, b)−1

)T

we obtain

hs0pa,b
(
A(a, b)−1

)T
=

(
b −a+ κ(a, b)b
0 b−1

)
= pT (a,b). (2.1)

Thus, hs0Λa,b = ΛT (a,b), as desired.

Finally, we show that for any lattice Λ ∈ X2 which is not vertically short, the orbit under {hs}s≥0 will intersect
Ω′.

Lemma 2.3. Let Λ ∈ X2 so that Λ is not vertically short. Then there is a s1 ∈ R so that hs1Λ ∈ Ω′.

Proof . Let S = [−1, 1]2 ⊂ R2. S is a square centered at 0, so is convex, centrally symmetric, and has area 4.
Thus by the Minkowski convex body theorem, any lattice Λ must have a nonzero vector v ∈ S. Since Λ is not
vertically short, we can assume that v = (a, b)T is not vertical, that is, a 6= 0. Further, we can assume that a ≥ 0,
otherwise we multiply by −1. Let s1 = b

a . Then (a, 0)T ∈ hs1Λ, so hs1Λ ∈ Ω′.
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2.1.1 Proof of Theorem 1.1

To prove Theorem 1.1, we combine the above lemmas. Lemma 2.3 guarantees that all non-vertically short lattice
horocycle orbits {hsΛ}s∈R intersect Ω′, and Lemma 2.2 shows that if an hs-orbit intersects Ω′ once, it must
intersect Ω′ infinitely often (both forward and backward in time). To see that the set of intersection times is
discrete, observe that the roof function R(a, b) = 1

ab is bounded below by 1 on Ω, so visits must be spread out at
least time 1 apart. The calculation of the roof function R and the return map T are also given by Lemma 2.2.

Finally, we address the remark following Theorem 1.1. A direct calculation shows that if a lattice Λ has a
vertical vector, then it is periodic under hs with period t2, where t is the length of the shortest vertical vector. If
Λ is vertically short, this means that it is periodic under hs of period ≤ 1, so the hs-orbit of Λ cannot intersect
Ω′. We will see in §2.2 below that these orbits correspond to embedded closed horocycles, the family of which
foliates the cusp of H2/SL(2,Z).

2.1.2 Observations on slopes

Given a unimodular lattice Λ, let
{0 ≤ s1 < s2 < . . . < sN . . .}

denote the sequence of slopes of vectors in Λ ∩ V1, where

V1 = {0 < x ≤ 1, y > 0} ⊂ R2

is the vertical strip as in §1.7. Then we see that s1 is in fact the first hitting time of Ω′ of the positive orbit
hsΛ, and the sn are the subsequent hitting times, since Ω′ is the set of horizontally short lattices. The slopes of
vectors decrease by s under the horocycle flow hs (in particular, while hs does not preserve slopes, it preserves
differences of slopes), and the BCZ map records them when they become horizontal, while also keeping track of
their horizontal component (the coordinate a) and the next vector in the strip to become horizontal (the vector
(b, a−1)T). The differences in slopes are the return times R, that is, for n ≥ 1,

sn+1 − sn = R(Tn(hs1Λ)). (2.2)

This observation will be crucial for the proofs our results on the geometry of numbers, see §7.

2.2 Hyperbolic geometry

We recall that the there is a natural identification of the the upper-half plane

H2 = {z = x+ iy : y > 0}.
with the space of unimodular lattices with a horizontal vector, via

z 7→ 1√
y

(
1 x
0 y

)
Z2 = Λ 1√

y ,
x√
y
.

That is, we identify z with the unimodular lattice homothetic to the lattice generated by 1 and z. This extends
to an identification of all unimodular lattices with the unit-tangent bundle T 1H2, where the point (z, i) (where
i denotes the upward pointing tangent vector) is identified to the lattice with a horizontal vector, and the point
(z, eiθi) is identified to the lattice rotated by angle θ. This identification is well-defined up to the action of
SL(2,Z) by isometries on H2. In the standard fundamental domain for SL(2,Z),

{
z = x+ iy ∈ H2 : |z| > 1, |x| < 1

2

}
,

the set of horizontally short lattices can be identified with the strip

C1 :=

{
z = x+ iy ∈ H2 : y > 1, |x| < 1

2

}
,

together with their upward pointing tangent vectors, see Figure 6.
The explicit map between this region and Ω′ is given by (x, y) 7→ ΛI(x,y), where

I(x, y) = (y−1/2, xy−1/2 +my−1/2),

where

m =

⌊
1− y−1/2

xy−1/2

⌋
=

⌊
xy1/2 − 1

x

⌋
.

The choice of m is as in the proof of Lemma 2.3, which guarantees that the image I(C1) = Ω′, since (x, y) is
already naturally identified with Λy−1/2,xy−1/2 .
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Fig. 6. A hyperbolic picture of Ω′ ≡ C1. The green circle is an hs-orbit. Vertical lines are gt-orbits and
horizontal lines are us-orbits.
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2.2.1 Geodesics and horocycles

The orbits of the one-parameter subgroups

A :=

{
gt =

(
et/2 0

0 e−t/2

)
: t ∈ R

}

and

U :=

{
us =

(
1 s
0 1

)
: t ∈ R

}
,

the geodesic and opposite horocycle flows respectively, also have nice interpretations in terms of hyperbolic
geometry. Under our choices, the action of {gt : t ≤ 0} moves the upward pointing tangent vectors vertically
upward in H2, and the flow {us} moves them horizontally. In particular, Ω′ is preserved by the action of
{gt : t ≤ 0} and {us}. In dynamical language, orbits of hs are leaves of the stable foliation for {gt : t ≤ 0}, and
{us} are leaves of the strong unstable foliation. We are constructing a cross section of hs by taking a piece of
the unstable foliation AU . That is, Ω′ ⊂ AU .

In the Euclidean picture, direct calculations show that

gtΛa,b = Λe−t/2a,e−t/2b and usΛa,b = Λa,b+sa−1 ,

so geodesic orbits are radial lines and opposite horocyclic orbits are vertical lines, see Figure 7. We will use these
observations in crucial ways in §2.3 below.

2.2.2 Identifications

Note that in the fundamental domain

{z = x+ iy : |z| ≥ 1, |x| ≤ 1

2
}

for SL(2,Z) acting on H2, there is a natural identification of the vertical sides x = 1
2 and x = − 1

2 via the
transformation

z 7→ z + 1,

which is a fractional linear transformation associated to the unipotent matrix
(

1 1
0 1

)
.

In the Euclidean picture, we can also identify two boundaries of the region Ω via the above unipotent matrix,
namely the lines {x+ y = 1 : 0 < x ≤ 1} and {y = 1 : 0 < x ≤ 1}. The resulting loop formed by the vertical
segment

{x = 1 : 0 < y ≤ 1}
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Fig. 7. Geodesic and opposite horocyclic orbits in the Euclidean picture of Ω.

gt

us

Ω

corresponds to the closed horocycle
{z = 1 + iy : 0 ≤ y ≤ 1}

in the hyperbolic picture. Thus, the topology of Ω is that of a sphere with one puncture (corresponding to the
point at∞ in the hyperbolic picture and the point (0, 1) in the Euclidean picture) and one boundary component
(corresponding to the loop described above).

2.3 Self-similarity

The BCZ map has an extraordinary self-similarity property which can be seen naturally in both the hyperbolic
and Euclidean pictures. Let t > 0, and let Ω′t denote the set of t-horizontally short lattices. Arguing as in
Lemma 2.1, we have the identification with the set

Ωt := {(a, b) ∈ (0, t] : a+ b > t}. (2.3)

Appropriately modifying Lemma 2.3, we can define a return map (the t-BCZ map)

Tt : Ωt → Ωt,

which captures the hs-orbits of all lattices except those of 1
t -vertically short lattices. Modifying the argument

in Lemma 2.2, we have

Tt(a, b) =

(
b,−a+

⌊
t+ a

b

⌋
b

)
. (2.4)

A direct calculation shows that the t-BCZ map is conjugate to the original (1-) BCZ map via the linear
transformation Mt : Ω→ Ωt given by

Mt(a, b) = (ta, tb),

that is
Tt ◦Mt = Mt ◦ T. (2.5)

Now assume t < 1 (if t > 1, the roles of t and 1 below should be reversed). Then the set of t-horizontally short
lattices can also be identified with the subset Ω(t) ⊂ Ω given by

Ω(t) := {(a, b) ∈ Ω : a < t}.

Let T (t) : Ω(t) → Ω(t) be the first return map of the BCZ map T to Ω(t). Thus, T (t) also represents the first
return map of hs to the set of t-horizontally short lattices, and so T (t) and Tt are conjugate. This conjugacy can
be made explicit via the map Lt : Ω(t) → Ωt given by

Lt(a, b) =

(
a, b+

⌊
t− b
a

⌋
b

)
,
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Fig. 8. Ωt and Ω(t). Ω can be identified with Ωt via the scaling Mt, and Ωt and Ω(t) via the map Lt.

x = 1

y = 1

y = t

Ω

x = t

Ωt

Ω(t)

Fig. 9. A hyperbolic picture of Ωt ⊂ Ω, that is, Ct ⊂ C1.
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Ω

y = t−2

Ωt

that is,

Tt ◦ Lt = Lt ◦ T (t).

In the hyperbolic picture, the set of t-horizontally short lattices can be identified with the subset

Ct :=

{
z = x+ iy ∈ H2 : y > t−2, |x| < 1

2

}
.

Figures 8 and 9 show the Euclidean and hyperbolic pictures respectively. We can summarize this discussion with
the following:

Observation 1. T is self-similar in the following sense: For any 0 < t < 1, the BCZ map T is conjugate to its
own first-return map T (t).

Essentially, this self-similarity is a consequence of the following conjugation relation for gt and hs

gthsg−t = hse−t , (2.6)

which in particular implies that the time-1 map h1 and time-s map hs are conjugate for any s > 0 (via the map
glog s).
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3 Ergodic properties of the BCZ map

In this section, we prove Theorem 1.2, using Theorem 1.1 and well-known properties of suspension flows. We
first recall these properties, which can be found, e.g., in [31].

3.1 Suspension Flows

Let (X,µ) be a measure space, and T : X → X a measure-preserving bijection. Let R : X → R+ be in L1(X,µ).
The suspension flow over T with roof function R is defined on the space

XR := {(x, t) : x ∈ X, t ∈ [0, R(x))}/ ∼ (3.1)

where (x,R(x)) ∼ (T (x), 0). The suspension flow φR,T is given by

φR,Ts (x, t) = (x, s+ t).

The measure dνR,T = 1
‖R‖1 dµdt is a φR,T -invariant probability measure on XR. It is ergodic if and only if µ

is T -ergodic.The natural dual construction to suspension flow is the construction of a first return map for a
flow. Given a measure-preserving flow φ : (Y, ν)→ (Y, ν), and a subset X ⊂ Y so that for almost all y ∈ Y ,
{t ∈ R : φty ∈ X} is discrete, we define the first return map T : X → X by T (x) = φR(x)(x), where

R(x) = inf{t > 0 : φt(x) ∈ X}

is the first return time. There is a natural (possibly infinite) T -invariant measure µ on X so that R ∈ L1(X,µ).
and the suspension flow φR,T : (XR, νR,T )→ (XR, νR,T ) is naturally isomorphic to the original flow φ. There
is also a map between the sets of invariant measures for the flow φR,T and the map T , whose properties are
summarized in the following:

Lemma 3.1. Let (X,µ) be a measure space, and let T : (X,µ)→ (X,µ) be a µ-preserving bijection. Let R be
a positive function in L1(X,µ). The map η 7−→ ηR,T , with dηR,T = 1

‖R‖1,η dηdt is a bijection between the set

of T -invariant measures η on X so that R ∈ L1(X, η), and the set of φR,T invariant probability measures on
XR (and thus also between the ergodic invariant measures). Moreover, we have Abramov’s formula relating the
entropy of the flow φR,T (that is, of its time 1-map) to the entropy of the map T :

hηR,T (φR,T1 ) =
hη(T )

‖R‖1,η
. (3.2)

3.2 Ergodicity

In this section, we prove the ergodicity and measure-classification parts of Theorem 1.2. The ergodicity of the
BCZ map with respect to dm = 2dadb follows from

Ergodicity of the horocycle flow with respect to Haar measure µ2 on X2.

Suspension The measure 2dadbds on X2 (viewing it as the suspension space over Ω) is an absolutely continuous
invariant measure for {hs}.

Measure classification By Dani’s measure classification [15], this must be (a constant multiple of) µ2.

To show uniqueness, suppose ν was another ergodic T invariant measure on Ω. Then it must be supported on a
periodic orbit for T , since the measure dνds on X2 is a non-Haar ergodic invariant measure for {hs} and thus,
by Dani’s measure classification, must be supported on a periodic orbit for {hs}.



18 J.S. Athreya and Y.Cheung

3.3 Entropy

We now prove the fact that the entropy hm(T ) of T with respect to the Lebesgue probability measure m is 0,
completing the proof of Theorem 1.2. We use Lemma 3.1), which states that the entropy hm(T ) of the BCZ map
with respect to m is proportional to the entropy of the horocycle flow hµ2

(h1) with respect to Haar measure.
To show that hµ2

(h1) = 0, we record a fact which seems to be well-known but does not have a complete proof
in the literature as far as we are aware:

Theorem 3.1. Let Γ ⊂ SL(2,R) be a lattice. Let µ2 denote the finite measure on SL(2,R)/Γ induced by Haar
measure. Then

hµ2
(h1) = 0.

In fact, the topological entropy

htop(h1) = 0.

Proof . When Γ is a uniform lattice, that is, the quotient H2/Γ is compact, the second assertion is a theorem
of Gurěvic [19], and together with the standard variational principle (see, e.g., Walters [35]), which states that
the topological entropy is the supremum of the measure-theoretic entropies. When Γ is non-uniform, we can use
a version of the variational principle for locally compact spaces due to Handel-Kitchens [23], to again reduce the
measure-theoretic statement to a topological statement. Since the horocycle flow is C∞, we can apply a theorem
of Bowen [12] to conclude that

htop(h1) <∞.

On the other hand, since hs is conjugate to h1 for any s > 0, we have

htop(h1) = htop(hs) = shtop(h1),

which implies that htop(h1) = 0.

4 Structure of Periodic Orbits

In this section we prove Theorems 1.4 and 1.5 and describe in detail the relationship between periodic orbits for
T and hs. We first record (in §4.1) our geometric proof of the key observation (1.5) that certain periodic orbits
of the BCZ map parameterize Farey fractions.

4.1 Farey fractions and lattices

In this section, we give a geometric proof the following

Lemma 4.1. Let Q be a positive integer, and let

F(Q) = {0

1
= γ1 < γ2 =

1

Q
< . . . < γi =

pi
qi
< . . . < γN =

1

1
},

N = N(Q) =
∑

q≤Q ϕ(q) denote the Farey sequence. Then (1.5) holds, that is,

T i
(

1

Q
, 1

)
=

(
qi
Q
,
qi+1

Q

)
.

Remark: Here, i is interepreted cyclically (i.e., in Z/NZ). In particular, this is a periodic orbit for T (and for
hs). Note also that the return time gives (normalized) gaps between the Farey fractions, that is,

R ◦ T i
(

1

Q
, 1

)
=

Q2

qiqi+1
= Q2(γi+1 − γi).
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Fig. 10. The triangles T4 and gt4T4, with lattice points. Primitive lattice points in blue, others are in red .
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Proof . Geometrically, the sequence F(Q) correspond to the slopes of primitive integer vectors

(
qi
pi

)
in the

(closed) triangle TQ with vertices at (0, 0), (Q, 0), and (Q,Q). Now note that since Z2 contains a vertical vector,
it is periodic under hs, with period 1. Using the conjugation relation (2.6), we have that the lattice gtZ2 has
period e−t under hs, since

he−tgtZ2 = gth1Z2 = gtZ2.

Note that gt scales slopes (and their differences) by e−t. For Q ∈ N, setting tQ = −2 lnQ, consider the lattice

gtQZ2 =

(
Q−1 0

0 Q

)
Z2

Note that we can also write this as

(
Q−1 0

0 Q

)
Z2 =

(
Q−1 1

0 Q

)(
1 −Q
0 1

)
Z2 =

(
Q−1 1

0 Q

)
Z2

This lattice corresponds to the point (Q−1, 1) in the Farey triangle Ω. By our earlier observation, this has period
Q2 under hs. We are interested in the behavior of the orbit of this point under T . Recall that the BCZ map only
‘sees’ primitive vectors with horizontal component less than 1 that is, in the strip V = V1, since hs does not
change the horizontal component of vectors. Originally we were interested in Farey fractions of level Q, that is,
the slopes of (primitive) integer vectors in the region TQ. Applying the matrix gtQ , the region TQ is transformed

into a subset V . Thus, the vectors

(
qi
pi

)
∈ TQ correspond to vectors

(
Q−1qi
Qpi

)
∈ gtQTQ ⊂ V . Therefore,

they are seen by the BCZ map. Precisely, gtQTQ is the triangle with vertices at (0, 0), (1, 0), and (1, Q2). See
Figure 10.
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As noted above, the (primitive) vectors

(
Q−1qi
Qpi

)
∈ gtQZ2 will be seen by the BCZ map in the order of their

slopes (that is, at time Q2γi), and the time in between the ith and (i+ 1)st vectors will precisely be the difference
in their slopes

Q2(γi+1 − γi).

At time 0 we are seeing the horizontal vector

(
Q−1

0

)
(corresponding to γ0), and the next vector to get short

is

(
1
Q

)
(corresponding to γ1), which will become horizontal in time

R(Q−1, 1) = Q = Q2

(
1

Q
− 0

)
= Q2(γ1 − γ0).

More generally, we have that T i(Q−1, 1) corresponds to the lattice hQ2γigtQZ2, and noting

hQ2γigtQ

(
qi qi+1

pi pi+1

)
=

(
Q−1qi Q−1qi+1

0 Qq−1
i

)
.

we obtain, as desired

T i(Q−1, 1) =

(
qi
Q
,
qi+1

Q

)
,

and
R(T i(Q−1, 1)) = Q2(γi+1 − γi).

In particular, the point (Q−1, 1) is T -periodic with period N(Q). Also note that

N(Q)−1∑

i=0

R(T i(Q−1, 1)) = Q2,

and thus, the sum of the return times over the discrete periodic orbit correspond, as they must, to the continuous
period.

4.2 Proof of Theorem 1.4

We first note that any periodic point (a, b) ∈ Ω for T corresponds to a periodic point pa,bZ2 ∈ Ỹ for hs on X2

and vice-versa. Precisely, suppose (a, b) ∈ Ω is periodic under T , and n = P (a, b) > 0 is the minimal period, so

Tn(a, b) = (a, b)

and T j(a, b) 6= (a, b) for j < n. Then
hs(a,b)pa,bZ2 = pa,bZ2,

where

s(a, b) =

n−1∑

i=0

R(T i(a, b)).

Note that the points (a, a) ∈ Ω have period P (a, a) = 1, and that a direct calculation shows that s(a, a) =
R(a, a) = 1

a2 .
Periodic orbits for hs occur in natural families, due the conjugation relation (2.6). In particular, if Λ is

periodic with period s0,
hs0e−tgtΛ = gths0Λ = gtΛ, (4.1)

so the flow period of gtgZ2 is s0e
−t. We have

gtΛa,b = Λet/2a,et/2b,

so we see that if (a, b) is periodic for T , so is the entire line segment

{
(ta, tb), 1 ≥ t > 1

a+ b

}
.
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Thus, to analyze which points have periodic orbits, it suffices to consider points of the form (1, b) or (a, 1).
Since T (a, 1) = (1, 1− a), we consider points of the first kind, or, equivalently, lattices of the form Λ1,b. This is
a periodic point under hs if and only if there exists an s0 so that hs0Λ1,b = Λ1,b, or, equivalently,

p−1
1,bhs0p1,b ∈ SL(2,Z).

A direct calculation shows that this is impossible if y is irrational, and if y = k
l the minimal such s0 = l2, and

we have

p−1
1,bhs0p1,b =

(
1 + kl k2

−l2 1− kl

)
. (4.2)

This proves Theorem 1.4, since we have shown that any point with rational slope is periodic.

4.3 Proof of Theorem 1.5

As above, we consider the point (1, b). If b = k
l , k ≤ l ∈ N relatively prime, then the period under hs is l2. The

line segment associated to this point is

{(
t, t
k

l

)
: t ∈

(
l

l + k
, 1

]}
.

Applying (2.6) to pt,t kl
Z2, we can calculate the period

s

(
t, t
k

l

)
=
l2

t2
.

To calculate the discrete period, we analyze the scalings of the Farey periodic orbits

{
T i
(

1,
1

Q

)}N(Q)−1

i=0

using the following proposition, a special case of Theorem 1.5 which we will use to prove the general result:

Proposition 4.1. For t ∈
(

Q
Q+1 , 1

]
,

P

(
t,
t

Q

)
= N(Q).

This will follow from showing that T in fact is linear along the orbit of the segment
{(
t, tQ

)
: t ∈

(
Q
Q+1 , 1

]}
,

that is, the segment does not ‘break up’ into pieces. Precisely, we have:

Lemma 4.2. For t ∈
(

Q
Q+1 , 1

]
, 1 ≤ i ≤ N(Q),

κ

(
T i
(
t,
t

Q

))
= κ

(
T i
(

1,
1

Q

))
.

Proof . Since T i
(

1, 1
Q

)
=
(
qi
Q ,

qi+1

Q

)
, we need to show, for t ∈

(
Q
Q+1 , 1

]

κ

(
qi
Q
,
qi+1

Q

)
= κ

(
tqi
Q
,
tqi+1

Q

)
.
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We have

κ

(
tqi
Q
,
tqi+1

Q

)
=

⌊
Q
t + qi

qi+1

⌋
(4.3)

≤
Q
t + qi

qi+1

<
Q+ 1 + qi

qi+1

≤ qi+1 + qi+2 + qi
qi+1

= 1 +

⌊
Q+ qi
qi+1

⌋

where in the last line we are using the identity

qi + qi+2

qi+1
=

⌊
Q+ qi
qi+1

⌋
.

On the other hand,
Q
a + qi

qi+1
≥ Q+ qi

qi+1
≥
⌊
Q+ qi
qi+1

⌋
.

Thus, ⌊
Q+ qi
qi+1

⌋
≤ κ

(
tqi
Q
,
tqi+1

Q

)
< 1 +

⌊
Q+ qi
qi+1

⌋
,

so

κ

(
tqi
Q
,
tqi+1

Q

)
=

⌊
Q+ qi
qi+1

⌋
= κ

(
qi
Q
,
qi+1

Q

)

as desired.

Now Proposition 4.1 follows from P
(

1, 1
Q

)
= N(Q).

To prove Theorem 1.5, we observe that the point
(
1, kl
)

is contained in the periodic orbit corresponding to the

point
(

1
l , 1
)
, since we can find consecutive Farey fractions γi = ai

l and γi+1 = ai+1

k in F(l) (we are assuming

that gcd(k, l) = 1). By Proposition 4.1, for a ∈ ( l
l+1 , 1],

P

(
a, a

k

l

)
= N(l).

If we put a = l
l+1 , we have the point

(
l
l+1 ,

k
l+1

)
, which is contained in the periodic orbit of the point

(
1
l+1 , 1

)
,

by similar reasoning as above. Applying Proposition 4.1 to this point, we have that for b ∈
(

1
l+1 , 1

]
,

P

(
bl

l + 1
,
bk

l + 1

)
= N(l + 1).

Rewriting, we have that for a ∈
(

l
l+2 ,

l
l+1

]
,

P

(
t, t
k

l

)
= N(l + 1).

Continuing to reason in this fashion, we have that for 1 ≤ r ≤ k, t ∈
(

l
l+r ,

l
l+r−1

]
,

P

(
t, t
k

l

)
= N(l + r − 1).

Finally, we need to calculate An
(
t, tkl

)
, where n = P

(
t, tkl

)
. Letting s0 = s

(
a, akl

)
= l2

a2 , we have, by a similar
calculation to (4.2) that

p−1
t,t kl

hs0pt,t kl
=

(
1 + kl k2

−l2 1− kl

)
.
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On the other hand, (2.1) can be re-written as the conjugation

p−1
T (a,b)hR(a,b)pa,b = A(a, b)T.

Iterating, we obtain, for any m > 0, (a, b) ∈ Ω,

p−1
Tm(a,b)hR(a,b)pa,b = Am(a, b)T.

Applying this to (a, b) =
(
t, tkl

)
and m = n, we have

(
An(a, b)−1

)T
=

(
1 + kl k2

−l2 1− kl

)
,

since Tn
(
t, tkl

)
=
(
t, tkl

)
. Inverting and taking transposes, we obtain, as desired

AP(t,t kl )

(
t, t
k

l

)
=

(
1− kl l2

−k2 1 + kl

)
,

completing the proof.

4.4 Segments and the shearing matrix

Note that the matrix

AP(a,a kl )

(
a, a

k

l

)
=

(
1− kl l2

−k2 1 + kl

)

is parabolic, and fixes the segment
{(
a, akl

)
: a ∈

(
l
l+k , 1

]}
. In fact, it shears along this segment in the following

fashion. Note that

1

k2 + l2

(
l k
−k l

)(
1− kl l2

−k2 1 + kl

)(
l −k
k l

)
=

(
1 l2 + k2

0 1

)
.

Thus for points (a, b) sufficiently near the segment, they will be sheared along the segment under the appropriate
power of T (which may vary depending on the period of the subsegment (a, b) is close to). As it moves
along the segment, the period will change. This is illustrated in Figure 11, which shows the periodic segment{(
a, a2

3

)
: a ∈

(
3
5 , 1
]}

, which breaks up into two pieces, one of period 5 and one of period 6. The shearing matrix
for this line is given by (

−5 9
−4 7

)
,

which is conjugate to (
1 13
0 1

)
.

4.5 Hierarchies of periodic orbits

Theorem 1.5 has a nice geometric explanation, which we describe informally: If we start with the points (a, a) ∈ Ω
of period 1 under T , and move down the line, we hit

(
1
2 ,

1
2

)
, which is not in Ω. However, we can identify Λ 1

2 ,
1
2

with Λ 1
2 ,1

, since, in general, we have
Λa,1−a = Λa,1.

The orbit of
(

1
2 , 1
)

has period N(2) = 2, and continuing to move down the line, Proposition 4.1 shows that for
a ∈ (2/3, 1],

P
(a

2
, a
)

= N(2).

At a = 2
3 , we identify

(
1
3 ,

2
3

)
with the point

(
1
3 , 1
)
, which has period N(3) = 5. Continuing this process, we

obtain all the Farey periodic orbits
(

1
Q , 1

)
and the scaling segments

{(
t

Q
, t

)
: t ∈

(
Q

Q+ 1
, 1

]}
.

The set of T -periodic points in Ω is the union

⋃

Q∈N

⋃

1≤i≤N(Q)

{
T i
(
t

Q
, t

)
: t ∈

(
Q

Q+ 1
, 1

]}
.
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Fig. 11. The periodic segment
{(
a, a 2

3

)
: a ∈

(
3
5 , 1
]}

. The segment a ∈
(

3
4 , 1
)

is in blue and the segment

a ∈
(

3
5 ,

3
4

]
is in red. The labels next to the segments correspond to the power of T . The red segment has period

N(4) = 6, and the blue segment has period N(3) = 4.
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(1, 1)
(0, 1)

0

1

(0, 0)
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0

1

2
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4.6 Hyperbolic Geometry of Periodic Orbits

What we have done in X2 is to push the cuspidal horocycle correpsonding to Λa,a, a > 1 down using gt. For
a > 1, the lattice Λa,a is vertically short, and the hs trajectory is an embedded loop in X2 which does not
intersect Ω. For 1 > a > 1

2 , the hs-orbit it intersects our transversal once, on the point Λa,a, which is a fixed
point for the BCZ map T . As we push it down, the hs trajectory intersects the transversal more and more
times. However, it does not simply pick up one intersection at a time, but rather N(Q+ 1)−N(Q) = ϕ(Q+ 1)

intersections when we transition from
(

1
Q+1 ,

Q
Q+1

)
to
(

1
Q+1 , 1

)
.

5 Equidistribution of periodic orbits

5.1 Proof of Theorem 1.3

In this section, we prove Theorem 1.3, which is the key result for our number theoretic applications. This
is essentially a direct consequence of the well-known equidistribution principle for closed horocycles on X2,
originally due to Sarnak [32] and reproved by Eskin-McMullen [16] using ergodic theoretic techniques. In our
notation, and in terms of the map T , this result can be reformulated as follows. Recall that given a (non-empty)
interval I = [α, β] ⊂ [0, 1], and Q > 1, we defined ρQ,I as the probability measure supported on (a long piece of)
the orbit of ( 1

Q , 1). That is, setting NI(Q) := |F(Q) ∩ I|, we had

ρQ,I =
1

NI(Q)

∑

i:γi∈I
δT i( 1

Q ,1).

Define the measure ρRQ,I on X2 by setting

dρRQ,I = dρQ,Idt,

where we are identifying X2 with the suspension space over Ω.

Theorem 5.1. [[32],[16],[25]] As Q→∞,

ρRQ,I → µ2,

where the convergence is taken in the weak-* topology.
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Remark. In [32] and [16] the result is only established for the case α = 0, β = 1, although it is clear that the
same arguments in [16] work for the case of fixed 0 < α < β < 1. A proof of this was outlined in [25]. Stronger
results where the difference β − α is permitted to tend to zero with Q have been obtained by Hejhal [26] and
Strömbergsson [34].

Let π be the projection map from the suspension onto Ω. Note that π is continuous except for a set of
measure zero with respect to the measures ρRQ,I and µ2. Thus, we have as Q→∞,

ρQ,I =
1

R
π∗ρ

R
Q,I →

1

R
π∗µ2 = m,

which completes the proof of Theorem 1.3.

5.2 Farey Statistics

Our results on the statistics of Farey fractions are all immediate corollaries of Theorem 1.3, being statements
of the form ∫

Ω

GdρQ,I →
∫

Ω

Gdm (5.1)

for appropriate choices of functions G on Ω. In the applications to spacings and h-spacings, the function G is
in fact an indicator function, and so the convergence is immediate. In the setting of indices and moments, the
functions G are L1(m) functions, we need the following lemma.

Lemma 5.1. For Q ∈ N, set mQ = ρQ,I and let m∞ = m. Let W be the set of measurable functions G : Ω→ R
satisfying

‖G‖W := sup
Q∈N∪{∞}

∫

Ω

|G|dmQ <∞ (5.2)

where two functions in W are identified if their difference has zero norm. Let C0(Ω) be the space of continuous
functions vanishing at infinity equipped with the uniform norm and let W0 be the closure of its image in W .
Then (5.1) holds for any G ∈W0.

Proof . Let η : C0(Ω)→W be the natural inclusion map, which we note is a continuous injection that fails to
be an embedding. It induces a map η∗ : W ∗ →M(Ω) between the dual W ∗ with the weak-∗ topology and the
space M(Ω) of Radon measures on Ω. Each mQ determines a linear map η(C0(Ω))→ R that is readily seen to be
continuous even with the subspace topology on η(C0(Ω)) coming from W . This linear map extends uniquely to a
linear map W0 → R of norm at most one. Given ε > 0 and G ∈W0, there is sequence Gk ∈ C0(Ω) converging to
G. Choose k so that ‖Gk −G‖ < ε/3, then choose Q0 such that for all Q > Q0 we have |mQ(Gk)−m(Gk)| < ε/3.
The triangle inequality now gives

|mQ(G)−m(G)| ≤ 2‖G−Gk‖+ |mQ(Gk)−m(Gk)| < ε.

This shows that (5.1) holds.

Below, we indicate which functions go with which corollaries, and show how to verify the condition (5.2) in these
settings.

5.2.1 Spacings and h-spacings

Corollary 1.8 follows from applying (5.1) to the indicator function of the set R−1
([

3
π2|I|c,

3
π2|I|d

])
. Similarly,

Corollary 1.9 follows from applying (5.1) to the indicator function of the set R−1
h (B̃). SInce indicator functions

are bounded, (5.2) holds immediately.

5.2.2 Indices

To verify (5.2) for κα, we need:

Lemma 5.2 ([9], Lemma 3.4). Let r ∈ N, n ≥ 4r + 2. Suppose κ(a, b) = n. Then

1. For i = ±1, κ(T i(a, b)) = 1
2. For 1 < |i| ≤ r, κ(T i(a, b)) = 2
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That is, any large value n of κ must be followed by roughly n/4 small values. Furthermore, by the definition
of κ, we can see that the maximum of κ along the support of mQ is at most 2Q, which is on the order of the
square root of the length of the orbit NI(Q), since

κ

(
qi
Q
,
qi+1

Q

)
=

⌊
1 + qi

Q
qi+1

Q

⌋
=

⌊
Q+ qi
qi+1

⌋
≤ 2Q

1
= 2Q.

Combining these two facts, we have that there is a constant c = cβ , depending on the interval I and the power
β so that for any 0 < β < 2, and any Q ∈ N,

mQ(κ > N) ≤ cβN−β .
Let 0 < α < β < 2. Then

mQ(κα) =

∞∑

N=1

mQ

(
κ > N

1
α

)
< cβ

∞∑

N=1

N−
β
α < cβζ (β/α) .

Since m(κ = k) = 8
k(k+1)(k+2) for k ≥ 2, we have

m(κα) < 8ζ(3− α),

so we have verified (5.2) for κα, proving Corollary 1.10.

5.2.3 Moments

Finally, to obtain Theorem 1.11, we apply (5.1) to the function

Gs,t(a, b) = asbt,

t, s ∈ C, <s,<t ≥ −1. To verify (5.2), we use that for (a, b) ∈ Ω,

|Gs,t(a, b)| < |G−1,−1(a, b)|,
so it suffices to verify the condition in the case (s, t) = (−1,−1) . We need the following:

Lemma 5.3. For any interval I ⊂ [0, 1) there is a constant c1 such that for any Q with NI(Q) > 0, we have

NI(Q) ≥ c1Q2.

Proof . NI(Q) counts the number of primitive lattice points in the triangle:
{

(x, y) ∈ R2
+ :

y

x
∈ I, x ≤ Q

}
,

which has area 1
2Q

2|I|. There are two cases. If NQ/2(I) ≥ 1, then Theorem 3 of [13] (with the sup norm) implies

NQ(I) ≥
(

4

27π

)
· 3

8
Q2|I| = |I|

18π
Q2.

On the other hand, if NQ/2(I) = 0, the length of I is bounded above by the largest gap in FQ/2, which is at
most 2/Q, so that

NQ(I) ≥ 1 ≥ Q2|I|2
4

.

Thus, the lemma follows with the choice

c1 = min

( |I|
18π

,
|I|2
4

)
.

We have

mQ(G−1,−1) =
1

NI(Q)

∑

γi∈FI(Q)

Q2

qiqi+1
=
|I|Q2

NI(Q)
.

Applying Lemma 5.3, we have that mQ(G−1,1) is unfiormly bounded in Q, and we have that m(G−1,1) = π2

3 ,
completing the proof.
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5.2.4 Excursions

To prove Corollary 1.12, we apply (5.1) to the functions

Gmax(a, b) = max

{
a, b,

1

a+ b

}
,

and

Gmin(a, b) = min

{
1

a
,

1

b
, a+ b

}

respectively. Equation (5.2) is satisfied since Gmax is bounded by 1 and Gmin is bounded by 2.

6 Piecewise linear description of horocycles

Before proving Theorems 1.6 and 1.7, we record an elementary lemma on the behavior of the length of vectors
under hs, whose proof we leave to the reader.

Lemma 6.1. Let v = (x, y)T ∈ R2 be a vector with x > 0. Let σ± = σ ± |x|−1 where σ = y
x is the slope of v.

Then f(s) = ‖hsv‖sup is the continuous piecewise linear function given by

(i) f ′(s) = −|x| for s < σ−,
(ii) f(s) = |x| for σ− ≤ s ≤ σ+, and
(ii) f ′(s) = +|x| for s > σ+.

6.1 Minima and maxima

Recall that Lemma 2.1 states that Ω′ consists of lattices with a short (length ≤ 1) horizontal vector. This
observation shows that the visits of the trajectory {hsΛ}s≥0 to the transversal Ω′ are precisely the times sn(Λ)
of local minima of `Λ(s), since a lattice cannot contain more than 1 vector of supremum norm at most 1, and
under hs, vectors are shorter when they are horizontal. On Ω′, we have

` (Λa,b) = a.

By abuse of notation we write ` : Ω→ (0, 1] with

`(a, b) = a.

Similarly we write α(a, b) = 1
a . Thus when hsnΛ = Λan,bn , the length of the shortest vector in hsnΛ is given by

the horizontal vector

(
an
0

)
. Setting

s1(Λ) = min{s ≥ 0 : hsΛ ∈ Ω′},
and writing Λa1,b1 = hs1Λ, we have that

lN (Λ) =
1

N

N∑

n=1

`Λ(sn) =
1

N

N∑

n=1

`
(
Tn−1 (a1, b1)

)
,

and

aN (Λ) :=
1

N

N∑

n=1

αΛ(sn) =
1

N

N∑

n=1

α
(
Tn−1 (a1, b1)

)
.

Since both α and ` are in L1(Ω, dm), and we have assumed that Λ is not periodic under hs (and so, (a1, b1) is
not under T ), we can apply the Birkhoff Ergodic Theorem (and the fact that all non-periodic orbits are generic
for m, by the measure classification result) to conclude

lim
N→∞

1

N

N∑

n=1

`Λ(sn) = lim
N→∞

1

N

N∑

n=1

`
(
Tn−1 (a1, b1)

)
=

∫

Ω

`dm =
2

3
.

and

lim
N→∞

1

N

N∑

n=1

αΛ(sn) = lim
N→∞

1

N

N∑

n=1

α
(
Tn−1 (a1, b1)

)
=

∫

Ω

αdm = 2,

proving Theorem 1.6.



28 J.S. Athreya and Y.Cheung

Fig. 12. The hand-off between the vectors (a,−sb)T and (b,−sa+ b−1)T.

a−1

b−1

1

b

(0, 0) 1 (a−1b−1 − 1) a−1b−1

a

max(a, sa)

max(b,−sb + a−1)

6.2 Returns

For the corresponding results for local maxima Sn(Λ), we need to consider the ‘hand-off’ between the basis
vectors (a, 0)T and (b, a−1)T which happens after hitting the point Λa,b ∈ Ω. This hand-off happens when the
vectors hs(a, 0)T = (a,−sa)T and hs(b, a

−1)T = (b,−sb+ a−1)T have the same length. That is, we need to
calculate the time s ∈ (0, R(a, b)) so that

max(a, sa) = max(b,−sb+ a−1),

where we have taken absolute values of the coordinates (see Figure 12). A case-by-case analysis shows that the
length of the vector at the hand-off is given by f(x, y) = max

{
a, b, 1

a+b

}
. By a similar analysis as above, we

apply the ergodic theorem to this function (and to its reciprocal) to obtain Theorem 1.7.

7 Geometry of Numbers

In this section we prove Theorem 1.13 and Corollary 1.14.

7.1 Slope gap distribution

We will prove Theorem 1.13 by noting that the observations of §2.1.2 yield the following:

Lemma 7.1. Let t > 0, and let Tt denote the t-BCZ map. Let Λ denote a lattice without t-short vertical vectors,
and let Λ1 = hs1Λ be the first intersection of the orbit {hsΛ}s>0 with the transversal Ωt. Let 0 ≤ c ≤ d ≤ ∞.
Let χc,d denote the indicator function of the set

R−1(c, d) =

{
(x, y) ∈ Ωt :

1

d
< xy <

1

c

}
.

Then

1

N
|GN,t(Λ) ∩ (c, d)| = 1

N

N∑

i=0

χc,d(T
n
t (Λ1)).

Proof . The lemma follows from the fact that hs preserves differences in slopes, and the function R captures
these differences, for vectors in the strip Vt. In particular,

R(Tnt (Λ1)) = sn+1 − sn,

which yields the lemma.

The proof of the theorem then follows as in §6.1, by applying the Birkhoff ergodic theorem and Dani’s measure
classification.
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7.2 Slope gap statistics

To prove Corollary 1.14, we first observe that if Λ has a vertical vector, its periodicity under hs implies that the
sequence of slope gaps in Vt must repeat, so in particular there is an N0 = N0(t) so that GN,t(Λ) = GN0,t(Λ)
for all N ≥ N0. For example, in §4.1 we see that for the lattice Z2, N0(t) = N(btc), where N(Q) denotes
the cardinality of the Farey sequence. Again using the conjugation relation (2.6), we see that GN,t(Λ) =
GN,1(g−2 log tΛ). Using Lemma 7.1, we see that 1

N |GN,t(Λ) ∩ (c, d)| now corresponds to the integral of χc,d
along a periodic orbit for T , which, as t→∞, is getting longer and longer. By Theorem 1.3, this converges to
the integral of χc,d with respect to Lebesgue measure m, as desired.

8 Further Questions

8.1 BCZ maps for other lattices

It was communicated to us by O. Sarig that it is well-known that the horocycle flow on SL(2,R)/Γ for any
lattice Γ can be realized as a suspension flow over an adic transformation. A natural conjecture, then is:

Conjecture. The BCZ map is an adic transformation.

To our knowledge, the BCZ map is the first explicit description of a section and a return map for the horocycle
flow. We have the following immediate

Question. How explicitly can the return maps for hs on SL(2,R)/Γ for Γ 6= SL(2,Z) be given?

The first author, in joint work with J. Chaika and S. Lelievre [3], has calculated a BCZ-type map for
Γ = ∆(2, 5,∞), the (2, 5,∞)-Hecke triangle group (note that SL(2,Z) is the (2, 3,∞) triangle group).

8.2 Slope gaps for translation surfaces

The motivation for [3] was to generalize the calculation of the gap distribution for Farey sequences, which
correspond to closed trajectories for geodesic flow on the torus, to a particular example of a higher-genus
translation surface, given by a particular L-shaped polygon known as the golden L. A more general question,
for which more details can be found in [2] is:

Question. Explicitly describe a BCZ-type map and the return time function for the space of translation
surfaces. Use this to explicitly compute gap distributions for saddle connection slopes.

8.3 Mixing properties

While the horocycle flow hs is known to be mixing on X2 with respect to the measure µ2 (by, e.g., the Howe-
Moore theorem [6]), mixing is a property that does not pass between flows and return maps. In fact, there are
many well-known constructions of mixing suspension flows over non-mixing base transformations. Thus, we have
the natural

Question. Is the BCZ map T mixing?

8.4 Rates of convergence

Flaminio-Forni [17] and Strömbergsson [34] have proved power law upper bounds for the deviation of ergodic
averages for trajectories of hs on X2. These pass to the return map (with different leading constants), and it
would be interesting to give a direct proof of this phenomenon. Zagier [36] showed that proving an optimal rate
of equidistribution for long periodic trajectories for hs on SL(2,R)/SL(2,Z) (that is, an optimal error term in
Sarnak’s theorem [32]) is equivalent to the classical Riemann hypothesis. There is also an equivalent formulation
of the Riemann hypothesis in terms of the distribution of the Farey sequence due to Franel-Landau [18]. This
leads to

Question. Is there an optimum bound on the error term in Theorem 1.3 that is equivalent to the Riemann
hypothesis?

Jens Marklof has informed us that some progress toward the last question has been described in [29].
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