The (binary) heap is a data structure which is represented as an array and can be viewed as a binary tree such that

1. Each node of the tree corresponds to an element of the array and the value is stored in the node.

2. The tree is completely filled on all levels, except possibly the lowest, which is filled from the left up to a point.

3. The root of the tree is $A[1]$ and given the index i of a node, the indices of its parent and children can be computed as

 \[\text{Parent} (i) = \lfloor i/2 \rfloor \]
 \[\text{Left} (i) = 2i \]
 \[\text{Right} (i) = 2i + 1 \]
Example

![Binary tree and array representation of a heap]

Fig: Binary tree and array representation of a heap

4. The heap-structure satisfies the heap-property for node \(i \), other than the root:

\[A[\text{Parent}[i]] \geq A[i] \]

- Value at a node is at most that at its parent.
- This is called the max-heap (Root has the highest value). You can similarly define the min-heap.
Questions

1. What is the minimum and maximum number of elements in a heap of height h?

 minimum = 2^h
 maximum = $2^{h+1} - 1$

2. Is the sequence $23, 17, 14, 6, 13, 10, 1, 5, 7, 12$ a heap?

 ![Heap Diagram]

 No

3. Is an array in reverse sorted order a heap?

 Yes.
Maintaining the Heap property

The routine Heapify (\(\cdot\), \(\cdot\)) is used to maintain the heap property. Its inputs are

- The array \(A\) and an index \(i\)
- Heapify assumes

![Diagram]

- Idea: Make \(A[\text{subtree}]\) "float-down" such that the subtree rooted at \(i\) becomes a heap

Heapify \((A, i)\)

\[
\begin{align*}
 l & \leftarrow \text{left}(i) \\
 r & \leftarrow \text{right}(i) \\
 \text{if } & l \leq \text{heap-size}(A) \text{ and } A(l) > A(i) \\
 \text{then } & \text{largest} \leftarrow l \\
 \text{else } & \text{largest} \leftarrow i \\
 \text{if } & r \leq \text{heap-size}(A) \text{ and } A(r) > A(\text{largest}) \\
 \text{then } & \text{largest} \leftarrow r \\
 \text{if } & \text{largest} \neq 0; \\
 \text{then exchange } & A[\text{subtree}] \leftrightarrow A[\text{largest}] \\
\end{align*}
\]
Complexity

Running time of heapify on a subtree of size \(n \) rooted at \(i \) is

\[O(1) \text{ to fix the relationship amongst elements } A[i], A[l], A[r] + \]

running time of heapify on a subtree rooted at one of the children of \(i \)

\[= O(1) + O(h) \]

\[= O(n) = O(\log n) \]
Building a heap

- Heapify can be used from bottom-up to convert an array \(A[1, \ldots, n] \) into a heap.

*Note: Elements in the subarray \(A[(\lceil \frac{m}{2} \rceil + 1), \ldots, n] \) are all leaves (and therefore a 1-element heap).

Build-Heap \((A)\)

\[
\text{heap-size}(A) \leftarrow \text{length}(A)
\]

\[
\text{for } i = \left\lfloor \frac{\text{length}(A)}{2} \right\rfloor \text{ do } \text{compute } 1
\]

\[
\text{do } \text{Heapify}(A, i)
\]

Example: \([4, 1, 3, 12, 16, 19, 10, 11, 8, 17]\)
Exercise: Illustrate the operation of build-heap on
A = [5, 3, 17, 10, 84, 19, 6, 22, 9]
The Heapsort Algorithm

Idea
- Use build-heap to construct a heap on the input array $A[1, \ldots, n]$ where $n = \text{length}(A)$
- Now the maximum element lies at the root
- Exchange the root with $A[n]$. This puts the largest element in its correct spot (at the end of the array)
- Heapify $A[1, \ldots, n-1]$ by calling the routine at $A[1]$ since this is the only place where the heap property is violated.
- Repeat this process down to heap size of 2

Heapsort (A)

Build-Heap (A)
for $i \leftarrow \text{length}(A)$ down to 2
 do exchange $A[i]$ \leftrightarrow $A[1]$
 heap-size[A] \leftarrow heap-size[A] $-$ 1
 Heapify($A, 1$)

Example

Heapify A[5, 9]

...
Complexity of heapsort

1. Complexity of build-heap +
 \((n-1)\) calls to heapify

\[= \text{Complexity of build-heap} + O((n-1) \lg n)
 + O(n \lg n)\]