Cyclotomic Polytopes and Growth Series of Cyclotomic Lattices

Matthias Beck & Serkan Hoşten
San Francisco State University

math.sfsu.edu/beck Math Research Letters
Growth Series of Lattices

\[\mathcal{L} \subset \mathbb{R}^d \] – lattice of rank \(r \)

\(M \) – subset that generates \(\mathcal{L} \) as a monoid
Growth Series of Lattices

\(\mathcal{L} \subset \mathbb{R}^d \) – lattice of rank \(r \)

\(M \) – subset that generates \(\mathcal{L} \) as a monoid

\(S(n) \) – number of elements in \(\mathcal{L} \) with word length \(n \) (with respect to \(M \))

\(G(x) := \sum_{n \geq 0} S(n) x^n \) – growth series of \((\mathcal{L}, M)\)

\(G(x) = \frac{h(x)}{(1-x)^r} \) where \(h \) is the coordinator polynomial of \((\mathcal{L}, M)\)
Growth Series of Lattices

\(\mathcal{L} \subset \mathbb{R}^d \) – lattice of rank \(r \)

\(M \) – subset that generates \(\mathcal{L} \) as a monoid

\(S(n) \) – number of elements in \(\mathcal{L} \) with word length \(n \) (with respect to \(M \))

\(G(x) := \sum_{n \geq 0} S(n) x^n \) – growth series of \((\mathcal{L}, M) \)

\(G(x) = \frac{h(x)}{(1-x)^r} \) where \(h \) is the coordinator polynomial of \((\mathcal{L}, M) \)
\(\mathcal{L} \subset \mathbb{R}^d \) – lattice of rank \(r \)

\(M \) – subset that generates \(\mathcal{L} \) as a monoid

\(S(n) \) – number of elements in \(\mathcal{L} \) with word length \(n \) (with respect to \(M \))

\(G(x) := \sum_{n \geq 0} S(n) x^n \) – growth series of \((\mathcal{L}, M)\)

\[G(x) = \frac{h(x)}{(1-x)^r} \] where \(h \) is the coordinator polynomial of \((\mathcal{L}, M)\)
Cyclotomic Lattices

\[\mathcal{L} = \mathbb{Z}[e^{2\pi i/m}] \cong \mathbb{Z} \varphi(m) \]

\(\mathcal{M} \) – all \(m \)th roots of unity (suitably identified in \(\mathbb{R} \varphi(m) \))

\(h_m \) – coordinator polynomial of \(\mathbb{Z}[e^{2\pi i/m}] \)

Initiated by Parker, motivated by error-correcting codes and random walks
Cyclotomic Lattices

\[L = \mathbb{Z}[e^{2\pi i/m}] \cong \mathbb{Z}\varphi(m) \]

\(M \) – all \(m \)th roots of unity (suitably identified in \(\mathbb{R}\varphi(m) \))

\(h_m \) – coordinator polynomial of \(\mathbb{Z}[e^{2\pi i/m}] \)

Initiated by Parker, motivated by error-correcting codes and random walks

Theorem (Kløve–Parker) The coordinator polynomial of \(\mathbb{Z}[e^{2\pi i/p}] \), where \(p \) is prime, equals \(h_p(x) = x^{p-1} + x^{p-2} + \cdots + 1 \).
Cyclotomic Lattices

\[\mathcal{L} = \mathbb{Z}[e^{2\pi i/m}] \cong \mathbb{Z}\varphi(m) \]

\(M \) – all \(m^{\text{th}} \) roots of unity (suitably identified in \(\mathbb{R}\varphi(m) \))

\(h_m \) – coordinator polynomial of \(\mathbb{Z}[e^{2\pi i/m}] \)

Initiated by Parker, motivated by error-correcting codes and random walks

Theorem (Kløve–Parker) The coordinator polynomial of \(\mathbb{Z}[e^{2\pi i/p}] \), where \(p \) is prime, equals \(h_p(x) = x^{p-1} + x^{p-2} + \cdots + 1 \).

Conjectures (Parker)

(1) \(h_m(x) = g(x)\frac{m}{\sqrt{m}} \) for a palindromic polynomial \(g \) of degree \(\varphi(\sqrt{m}) \).

(2) \(h_{2p}(x) = \sum_{k=0}^{p-3} \left(x^k + x^{p-1-k} \right) \sum_{j=0}^{k} \binom{p}{j} + 2^{p-1}x^{p-1} \).

(3) \(h_{15}(x) = (1 + x^8) + 7(x + x^7) + 28(x^2 + x^6) + 79(x^3 + x^5) + 130x^4 \).
Main Results

Conjectures (Parker)

1. \(h_m(x) = g(x)^{m/\sqrt{m}} \) for a palindromic polynomial \(g \) of degree \(\varphi(\sqrt{m}) \).
2. \(h_{2p}(x) = \sum_{k=0}^{p-3} \left(x^k + x^{p-1-k} \right) \sum_{j=0}^{k} \binom{p}{j} + 2^{p-1} x^{p-1} \)
3. \(h_{15}(x) = (1 + x^8) + 7 (x + x^7) + 28 (x^2 + x^6) + 79 (x^3 + x^5) + 130 x^4 \)

Theorem (MB–Hoşten) Suppose \(m \) is divisible by at most two odd primes.

1. \(h_m(x) = h_{\sqrt{m}}(x)^{m/\sqrt{m}} \)
Main Results

Conjectures (Parker)

(1) \(h_m(x) = g(x)^{\frac{m}{\sqrt{m}}} \) for a palindromic polynomial \(g \) of degree \(\varphi(\sqrt{m}) \).

(2) \(h_{2p}(x) = \sum_{k=0}^{\frac{p-3}{2}} (x^k + x^{p-1-k}) \sum_{j=0}^{k} \binom{p}{j} + 2^{p-1} x^{\frac{p-1}{2}} \)

(3) \(h_{15}(x) = (1 + x^8) + 7 (x + x^7) + 28 (x^2 + x^6) + 79 (x^3 + x^5) + 130x^4 \)

Theorem (MB–Hoşten) Suppose \(m \) is divisible by at most two odd primes.

(1) \(h_m(x) = h_{\sqrt{m}}(x)^{\frac{m}{\sqrt{m}}} \)

(2) \(h_{\sqrt{m}}(x) \) is the h-polynomial of a simplicial polytope.
Main Results

Conjectures (Parker)

1. \(h_m(x) = g(x)^{m/\sqrt{m}} \) for a palindromic polynomial \(g \) of degree \(\varphi(\sqrt{m}) \).

2. \(h_{2p}(x) = \sum_{k=0}^{p-3} \left(x^k + x^{p-1-k}\right) \sum_{j=0}^{k} \binom{p}{j} + 2^{p-1} x^{p-1} \)

3. \(h_{15}(x) = (1 + x^8) + 7 \left(x + x^7\right) + 28 \left(x^2 + x^6\right) + 79 \left(x^3 + x^5\right) + 130x^4 \)

Theorem (MB–Hoşten) Suppose \(m \) is divisible by at most two odd primes.

1. \(h_m(x) = h_{\sqrt{m}}(x)^{m/\sqrt{m}} \)

2. \(h_{\sqrt{m}}(x) \) is the h-polynomial of a simplicial polytope.

Corollary If \(m \) is divisible by at most two odd primes, then \(h_{\sqrt{m}}(x) \) is palindromic, unimodal, and has nonnegative integer coefficients.
Main Results

Conjectures (Parker)

(1) \(h_m(x) = g(x)^{\frac{m}{\sqrt{m}}} \) for a palindromic polynomial \(g \) of degree \(\varphi(\sqrt{m}) \).
(2) \(h_{2p}(x) = \sum_{k=0}^{\frac{p-3}{2}} (x^k + x^{p-1-k}) \sum_{j=0}^{k} \binom{p}{j} + 2^{p-1}x^{\frac{p-1}{2}} \)
(3) \(h_{15}(x) = (1 + x^8) + 7(x + x^7) + 28(x^2 + x^6) + 79(x^3 + x^5) + 130x^4 \)

Theorem (MB–Hoşten) Suppose \(m \) is divisible by at most two odd primes.

(1) \(h_m(x) = h_{\sqrt{m}}(x)^{\frac{m}{\sqrt{m}}} \)
(2) \(h_{\sqrt{m}}(x) \) is the h-polynomial of a simplicial polytope.

Corollary If \(m \) is divisible by at most two odd primes, then \(h_{\sqrt{m}}(x) \) is palindromic, unimodal, and has nonnegative integer coefficients.

Theorem (MB–Hoşten) Parker’s Conjectures (2) & (3) are true.
Cyclotomic Polytopes

We choose a specific basis for $\mathbb{Z}[e^{2\pi i/m}]$ consisting of certain powers of $e^{2\pi i/m}$ which we then identify with the unit vectors in $\mathbb{R}^{\varphi(m)}$. The other powers of $e^{2\pi i/m}$ are integer linear combinations of this basis; hence they are lattice vectors in $\mathbb{Z}[e^{2\pi i/m}] \subset \mathbb{R}^{\varphi(m)}$. The m^{th} cyclotomic polytope C_m is the convex hull of all of these m lattice points in $\mathbb{R}^{\varphi(m)}$, which correspond to the m^{th} roots of unity.
Cyclotomic Polytopes

We choose a specific basis for $\mathbb{Z}[e^{2\pi i/m}]$ consisting of certain powers of $e^{2\pi i/m}$ which we then identify with the unit vectors in $\mathbb{R}^{\varphi(m)}$. The other powers of $e^{2\pi i/m}$ are integer linear combinations of this basis; hence they are lattice vectors in $\mathbb{Z}[e^{2\pi i/m}] \subset \mathbb{R}^{\varphi(m)}$. The m^{th} cyclotomic polytope C_m is the convex hull of all of these m lattice points in $\mathbb{R}^{\varphi(m)}$, which correspond to the m^{th} roots of unity. We will do this recursively in three steps:

1. m is prime
2. m is a prime power
3. m is the product of two coprime integers.
Cyclotomic Polytopes

We choose a specific basis for $\mathbb{Z}[e^{2\pi i/m}]$ consisting of certain powers of $e^{2\pi i/m}$ which we then identify with the unit vectors in $\mathbb{R}^{\varphi(m)}$. The other powers of $e^{2\pi i/m}$ are integer linear combinations of this basis; hence they are lattice vectors in $\mathbb{Z}[e^{2\pi i/m}] \subset \mathbb{R}^{\varphi(m)}$. The mth cyclotomic polytope C_m is the convex hull of all of these m lattice points in $\mathbb{R}^{\varphi(m)}$, which correspond to the mth roots of unity. We will do this recursively in three steps:

1. m is prime
2. m is a prime power
3. m is the product of two coprime integers.

When $m = p$ is a prime number, let $\zeta = e^{2\pi i/p}$ and fix the \mathbb{Z}-basis $1, \zeta, \zeta^2, \ldots, \zeta^{p-2}$ of the lattice $\mathbb{Z}[\zeta]$. Together with $\zeta^{p-1} = -\sum_{j=0}^{p-2} \zeta^j$, these p elements form a monoid basis for $\mathbb{Z}[\zeta]$. We identify them with $e_0, e_1, \ldots, e_{p-2}, -\sum_{j=0}^{p-2} e_j$ in \mathbb{R}^{p-1} and define the cyclotomic polytope $C_p \subset \mathbb{R}^{p-1}$ as the simplex

$$C_p = \text{conv} \left(e_0, e_1, \ldots, e_{p-2}, -\sum_{i=0}^{p-2} e_i \right).$$
Cyclotomic Polytopes

\[C_p = \text{conv} \left(e_0, e_1, \ldots, e_{p-2}, -\sum_{i=0}^{p-2} e_i \right). \]
Cyclotomic Polytopes

\[C_p = \text{conv}\left(e_0, e_1, \ldots, e_{p-2}, -\sum_{i=0}^{p-2} e_i \right). \]
Cyclotomic Polytopes

For two polytopes $P \subset \mathbb{R}^{d_1}$ and $Q \subset \mathbb{R}^{d_2}$, each containing the origin in its interior, we define the direct sum $P \circ Q := \text{conv}(P \times 0_{d_2}, 0_{d_1} \times Q)$. For a prime p, we define the cyclotomic polytope

$$C_p^{\alpha} = C_p \circ C_p \circ \cdots \circ C_p.$$

$p^{\alpha-1}$ times
Cyclotomic Polytopes

For two polytopes $P \subset \mathbb{R}^{d_1}$ and $Q \subset \mathbb{R}^{d_2}$, each containing the origin in its interior, we define the direct sum $P \circ Q := \text{conv} (P \times 0_{d_2}, 0_{d_1} \times Q)$. For a prime p, we define the cyclotomic polytope

$$C_p^\alpha = C_p \circ C_p \circ \cdots \circ C_p.$$
Cyclotomic Polytopes

For two polytopes $P \subset \mathbb{R}^{d_1}$ and $Q \subset \mathbb{R}^{d_2}$, each containing the origin in its interior, we define the direct sum $P \circ Q := \text{conv}(P \times 0_{d_2}, 0_{d_1} \times Q)$. For a prime p, we define the cyclotomic polytope

$$C_p^\alpha = C_p \circ C_p \circ \cdots \circ C_p.$$
Cyclotomic Polytopes

For two polytopes $P \subset \mathbb{R}^{d_1}$ and $Q \subset \mathbb{R}^{d_2}$, each containing the origin in its interior, we define the direct sum $P \circ Q := \text{conv}(P \times 0_{d_2}, 0_{d_1} \times Q)$. For a prime p, we define the cyclotomic polytope

$$C_p^\alpha = \underbrace{C_p \circ C_p \circ \cdots \circ C_p}_{p^{\alpha-1} \text{ times}}.$$

For two polytopes $P = \text{conv}(v_1, v_2, \ldots, v_s)$ and $Q = \text{conv}(w_1, w_2, \ldots, w_t)$ we define their tensor product

$$P \otimes Q := \text{conv}(v_i \otimes w_j : 1 \leq i \leq s, 1 \leq j \leq t).$$
Cyclotomic Polytopes

For two polytopes $P \subset \mathbb{R}^{d_1}$ and $Q \subset \mathbb{R}^{d_2}$, each containing the origin in its interior, we define the direct sum $P \circ Q := \text{conv} (P \times 0_{d_2}, 0_{d_1} \times Q)$. For a prime p, we define the cyclotomic polytope

$$C_p^{\alpha} = C_p \circ C_p \circ \cdots \circ C_p.$$

$p^{\alpha - 1}$ times

For two polytopes $P = \text{conv} (v_1, v_2 \ldots, v_s)$ and $Q = \text{conv} (w_1, w_2, \ldots, w_t)$ we define their tensor product

$$P \otimes Q := \text{conv} (v_i \otimes w_j : 1 \leq i \leq s, 1 \leq j \leq t).$$

Our construction implies for $m = m_1 m_2$, where $m_1, m_2 > 1$ are relatively prime, that the cyclotomic polytope C_m is equal to $C_{m_1} \otimes C_{m_2}$.
Cyclotomic Polytopes

For two polytopes $P \subset \mathbb{R}^{d_1}$ and $Q \subset \mathbb{R}^{d_2}$, each containing the origin in its interior, we define the direct sum $P \circ Q := \text{conv} (P \times 0_{d_2}, 0_{d_1} \times Q)$. For a prime p, we define the cyclotomic polytope

$$C_{p^\alpha} = \underbrace{C_p \circ C_p \circ \cdots \circ C_p}_{p^{\alpha-1} \text{ times}}.$$

For two polytopes $P = \text{conv} (v_1, v_2, \ldots, v_s)$ and $Q = \text{conv} (w_1, w_2, \ldots, w_t)$ we define their tensor product

$$P \otimes Q := \text{conv} (v_i \otimes w_j : 1 \leq i \leq s, 1 \leq j \leq t).$$

Our construction implies for $m = m_1 m_2$, where $m_1, m_2 > 1$ are relatively prime, that the cyclotomic polytope C_m is equal to $C_{m_1} \otimes C_{m_2}$.

For general m,

$$C_m = \underbrace{C_{\sqrt{m}} \circ C_{\sqrt{m}} \circ \cdots \circ C_{\sqrt{m}}}_{\frac{m}{\sqrt{m}} \text{ times}},$$

a $0/ \pm 1$ polytope with the origin as the sole interior lattice point.
Hilbert Series

$\mathcal{L} \cong \mathbb{Z}^d$ a lattice, M a minimal set of monoid generators, K a field

The vectors in $M' = \{(u, 1) : u \in M \cup \{0\}\}$ encoded as monomials give rise to the monoid algebra $K[M']$, in which each monomial corresponds to

(v, k) where $v = \sum_{u_i \in M \cup \{0\}} n_i u_i$ with nonnegative integer coefficients n_i such that $\sum n_i = k$.

Cyclotomic Polytopes and Growth Series of Cyclotomic Lattices 8 Matthias Beck
Hilbert Series

$\mathcal{L} \cong \mathbb{Z}^d$ a lattice, M a minimal set of monoid generators, K a field

The vectors in $M' = \{(u, 1) : u \in M \cup \{0\}\}$ encoded as monomials give rise to the monoid algebra $K[M']$, in which each monomial corresponds to (v, k) where $v = \sum_{u_i \in M \cup \{0\}} n_i u_i$ with nonnegative integer coefficients n_i such that $\sum n_i = k$. This grading gives rise to the Hilbert series

$$H(K[M']; x) := \sum_{k \geq 0} \dim_K (K[M']_k) x^k,$$

where $K[M']_k$ denotes the vector space of elements of degree k in this graded algebra.
Hilbert Series

\(\mathcal{L} \cong \mathbb{Z}^d \) a lattice, \(M \) a minimal set of monoid generators, \(K \) a field

The vectors in \(M' = \{(u,1) : u \in M \cup \{0\}\} \) encoded as monomials give rise to the monoid algebra \(K[M'] \), in which each monomial corresponds to \((v,k) \) where \(v = \sum_{u_i \in M \cup \{0\}} n_i u_i \) with nonnegative integer coefficients \(n_i \) such that \(\sum n_i = k \). This grading gives rise to the Hilbert series

\[
H(K[M'];x) := \sum_{k \geq 0} \dim_K (K[M']_k) x^k = \frac{h(x)}{(1 - x)^{d+1}},
\]

where \(K[M']_k \) denotes the vector space of elements of degree \(k \) in this graded algebra.
Hilbert Series

\(\mathcal{L} \cong \mathbb{Z}^d \) a lattice, \(M \) a minimal set of monoid generators, \(K \) a field

The vectors in \(M' = \{(u, 1) : u \in M \cup \{0\}\} \) encoded as monomials give rise to the monoid algebra \(K[M'] \), in which each monomial corresponds to \((v, k)\) where \(v = \sum_{u_i \in M \cup \{0\}} n_i u_i \) with nonnegative integer coefficients \(n_i \) such that \(\sum n_i = k \). This grading gives rise to the Hilbert series

\[
H(K[M']; x) := \sum_{k \geq 0} \dim_K (K[M']_k) x^k = \frac{h(x)}{(1 - x)^{d+1}},
\]

where \(K[M']_k \) denotes the vector space of elements of degree \(k \) in this graded algebra. When \(\mathcal{L} \cong \mathbb{Z}^d \), the number of elements in \(\mathcal{L} \) of length \(k \) (with respect to \(M \)) is equal to \(\dim_K(K[M']_k) - \dim_K(K[M']_{k-1}) \), and therefore the growth series of \(\mathcal{L} \) is

\[
G(x) = (1 - x)H(K[M']; x) = \frac{h(x)}{(1 - x)^d}.
\]
Hilbert Series

\(\mathcal{L} \cong \mathbb{Z}^d \) a lattice, \(M \) a minimal set of monoid generators, \(K \) a field

The vectors in \(M' = \{(u, 1) : u \in M \cup \{0\}\} \) encoded as monomials give rise to the monoid algebra \(K[M'] \), in which each monomial corresponds to \((v, k)\) where \(v = \sum_{u_i \in M \cup \{0\}} n_i u_i \) with nonnegative integer coefficients \(n_i \) such that \(\sum n_i = k \). This grading gives rise to the Hilbert series

\[
H(K[M']; x) := \sum_{k \geq 0} \dim_K (K[M']_k) x^k = \frac{h(x)}{(1 - x)^{d+1}},
\]

where \(K[M']_k \) denotes the vector space of elements of degree \(k \) in this graded algebra. When \(\mathcal{L} \cong \mathbb{Z}^d \), the number of elements in \(\mathcal{L} \) of length \(k \) (with respect to \(M \)) is equal to \(\dim_K(K[M']_k) - \dim_K(K[M']_{k-1}) \), and therefore the growth series of \(\mathcal{L} \) is

\[
G(x) = (1 - x)H(K[M']; x) = \frac{h(x)}{(1 - x)^d}.
\]

In the conditions of our theorem, the Hilbert series of \(C_m \circ C_m \) equals \((1 - x)^m\) times the square of the Hilbert series of \(C_m \), whence \(h_m(x) = h(\sqrt{m}(x))^{\frac{m}{\sqrt{m}}} \).
A polytope P is **totally unimodular** if every submatrix of the matrix consisting of the vertices of P has determinant $0, \pm 1$.

Theorem (MB–Hoşten) If m is divisible by at most two odd primes then the cyclotomic polytope C_m is totally unimodular.
A polytope \mathcal{P} is **totally unimodular** if every submatrix of the matrix consisting of the vertices of \mathcal{P} has determinant 0, ± 1.

Theorem (MB–Hoşten) If m is divisible by at most two odd primes then the cyclotomic polytope C_m is totally unimodular.

Corollary If m is divisible by at most two odd primes then the cyclotomic polytope C_m is **normal**, i.e., the monoid generated by M' and the monoid of the lattice points in the cone generated by M' are equal.
A polytope \mathcal{P} is **totally unimodular** if every submatrix of the matrix consisting of the vertices of \mathcal{P} has determinant 0, ±1.

Theorem (MB–Hoşten) If m is divisible by at most two odd primes then the cyclotomic polytope C_m is totally unimodular.

Corollary If m is divisible by at most two odd primes then the cyclotomic polytope C_m is **normal**, i.e., the monoid generated by M' and the monoid of the lattice points in the cone generated by M' are equal.

Remark Total unimodularity breaks down already for C_{3pq} for distinct primes $p, q > 3$. This is an indication that Parker’s Conjecture (1) might not be true in general.
Theorem (MB–Hoşten) Suppose \(m \) is divisible by at most two odd primes.

(2) \(h_{\sqrt{m}}(x) \) is the h-polynomial of a simplicial polytope.

... follows now because \(C_{\sqrt{m}} \) has a unimodular triangulation, which induces a unimodular triangulation of the boundary of \(C_{\sqrt{m}} \). This boundary equals the boundary of a simplicial polytope \(Q \) (Stanley), and \(h_{\sqrt{m}} \) is the h-polynomial of \(Q \) (which is palindromic, unimodal, and nonnegative).
Total Unimodularity and Normality

Theorem (MB–Hoştten) Suppose m is divisible by at most two odd primes.

(2) $h_{\sqrt{m}}(x)$ is the h-polynomial of a simplicial polytope.

... follows now because $C_{\sqrt{m}}$ has a unimodular triangulation, which induces a unimodular triangulation of the boundary of $C_{\sqrt{m}}$. This boundary equals the boundary of a simplicial polytope Q (Stanley), and $h_{\sqrt{m}}$ is the h-polynomial of Q (which is palindromic, unimodal, and nonnegative).

Remark If C_m is a simplicial polytope then the coordinator polynomial h_m equals the h-polynomial of C_m. The polytope C_m is simplicial, e.g., for m a prime power or the product of two primes (the latter was proved by R. Chapman and follows from the fact that C_{pq} is dual to a transportation polytope with margins p and q).
Open Problems

- Describe the face structure of C_m, e.g., in the case $m = pq$.
Open Problems

- Describe the face structure of C_m, e.g., in the case $m = pq$.

- Is C_m normal for all m?
Open Problems

► Describe the face structure of C_m, e.g., in the case $m = pq$.

► Is C_m normal for all m?

► S. Sullivant computed that the dual of C_{105} is not a lattice polytope, i.e., C_{105} is not reflexive. If we knew that C_{105} is normal, a theorem of Hibi would imply that the coordinator polynomial h_{105} is not palindromic, and hence that Parker’s Conjecture (1) is not true in general.