Asymptotics of Ehrhart Series of Lattice Polytopes

Matthias Beck (SF State)

math.sfsu.edu/beck

Joint with Alan Stapledon (MSRI & UBC)

arXiv:0804.3639
to appear in Math. Zeitschrift
Let’s say we add two random 100-digit integers. How often should we expect to carry a digit?
Warm-Up Trivia

- Let’s say we add two random 100-digit integers. How often should we expect to carry a digit?

- How about if we add three random 100-digit integers?
Warm-Up Trivia

- Let’s say we add two random 100-digit integers. How often should we expect to carry a digit?

- How about if we add three random 100-digit integers?

- How about if we add four random 100-digit integers?
Warm-Up Trivia

- Let’s say we add two random 100-digit integers. How often should we expect to carry a digit?

- How about if we add three random 100-digit integers?

- How about if we add four random 100-digit integers?

The Eulerian polynomial $A_d(t)$ is defined through

$$
\sum_{m \geq 0} m^d t^m = \frac{A_d(t)}{(1 - t)^{d+1}}
$$

Persi Diaconis will tell you that the coefficients of $A_d(t)$ (the Eulerian numbers) play a role here. . .
Ehrhart Polynomials

\(\mathcal{P} \subset \mathbb{R}^d \) – lattice polytope of dimension \(d \) (vertices in \(\mathbb{Z}^d \))
Ehrhart Polynomials

$\mathcal{P} \subset \mathbb{R}^d$ – lattice polytope of dimension d (vertices in \mathbb{Z}^d)

$L_{\mathcal{P}}(m) := \# (m\mathcal{P} \cap \mathbb{Z}^d)$ (discrete volume of \mathcal{P})
Ehrhart Polynomials

\(\mathcal{P} \subset \mathbb{R}^d \) – lattice polytope of dimension \(d \) (vertices in \(\mathbb{Z}^d \))

\[L_{\mathcal{P}}(m) := \# (m \mathcal{P} \cap \mathbb{Z}^d) \] (discrete volume of \(\mathcal{P} \))

\[\text{Ehr}_{\mathcal{P}}(t) := 1 + \sum_{m \geq 1} L_{\mathcal{P}}(m) t^m \]
Ehrhart Polynomials

\(\mathcal{P} \subset \mathbb{R}^d \) – lattice polytope of dimension \(d \) (vertices in \(\mathbb{Z}^d \))

\(L_\mathcal{P}(m) := \# (m \mathcal{P} \cap \mathbb{Z}^d) \) (discrete volume of \(\mathcal{P} \))

\(\text{Ehr}_\mathcal{P}(t) := 1 + \sum_{m \geq 1} L_\mathcal{P}(m) t^m \)

Theorem (Ehrhart 1962) \(L_\mathcal{P}(m) \) is a polynomial in \(m \) of degree \(d \). Equivalently,

\[
\text{Ehr}_\mathcal{P}(t) = \frac{h(t)}{(1 - t)^{d+1}}
\]

where \(h(t) \) is a polynomial of degree at most \(d \).
Ehrhart Polynomials

\(\mathcal{P} \subset \mathbb{R}^d \) – lattice polytope of dimension \(d \) (vertices in \(\mathbb{Z}^d \))

\(L_\mathcal{P}(m) := \# (m \mathcal{P} \cap \mathbb{Z}^d) \) (discrete volume of \(\mathcal{P} \))

\(\text{Ehr}_\mathcal{P}(t) := 1 + \sum_{m \geq 1} L_\mathcal{P}(m) t^m \)

Theorem (Ehrhart 1962) \(L_\mathcal{P}(m) \) is a polynomial in \(m \) of degree \(d \). Equivalently,

\[
\text{Ehr}_\mathcal{P}(t) = \frac{h(t)}{(1 - t)^{d+1}}
\]

where \(h(t) \) is a polynomial of degree at most \(d \).

Write the Ehrhart h-vector of \(\mathcal{P} \) as \(h(t) = h_d t^d + h_{d-1} t^{d-1} + \cdots + h_0 \), then

\[
L_\mathcal{P}(m) = \sum_{j=0}^{d} h_j \binom{m + d - j}{d}.
\]
Ehrhart Polynomials

\(\mathcal{P} \subset \mathbb{R}^d \) – lattice polytope of dimension \(d \) (vertices in \(\mathbb{Z}^d \))

\[L_\mathcal{P}(m) := \# \left(m\mathcal{P} \cap \mathbb{Z}^d \right) \text{ (discrete volume of } \mathcal{P}) \]

\[\text{Ehr}_\mathcal{P}(t) := 1 + \sum_{m \geq 1} L_\mathcal{P}(m) t^m = \frac{h(t)}{(1 - t)^{d+1}} \]

(Serious) Open Problem Classify Ehrhart h-vectors.
Ehrhart Polynomials

\(\mathcal{P} \subset \mathbb{R}^d \) – lattice polytope of dimension \(d \) (vertices in \(\mathbb{Z}^d \))

\(L_\mathcal{P}(m) := \# (m \mathcal{P} \cap \mathbb{Z}^d) \) (discrete volume of \(\mathcal{P} \))

\[
\text{Ehr}_\mathcal{P}(t) := 1 + \sum_{m \geq 1} L_\mathcal{P}(m) t^m = \frac{h(t)}{(1 - t)^{d+1}}
\]

(Serious) Open Problem Classify Ehrhart h-vectors.

Easier Problem Study \(\text{Ehr}_{n\mathcal{P}}(t) = 1 + \sum_{m \geq 1} L_\mathcal{P}(nm) t^m \) as \(n \) increases.
Why Should We Care?

- Linear systems are everywhere, and so polytopes are everywhere.
Why Should We Care?

- Linear systems are everywhere, and so polytopes are everywhere.

- In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").
Why Should We Care?

- Linear systems are everywhere, and so polytopes are everywhere.

- In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").

- Polytopes are basic geometric objects, yet even for these basic objects volume computation is hard and there remain many open problems.
Why Should We Care?

▶ Linear systems are everywhere, and so polytopes are everywhere.

▶ In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").

▶ Polytopes are basic geometric objects, yet even for these basic objects volume computation is hard and there remain many open problems.

▶ Many discrete problems in various mathematical areas are linear problems, thus they ask for the discrete volume of a polytope in disguise.
Why Should We Care?

▶ Linear systems are everywhere, and so polytopes are everywhere.

▶ In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").

▶ Polytopes are basic geometric objects, yet even for these basic objects volume computation is hard and there remain many open problems.

▶ Many discrete problems in various mathematical areas are linear problems, thus they ask for the discrete volume of a polytope in disguise.

▶ Polytopes are cool.
General Properties of Ehrhart h-Vectors

\[
\text{Ehr}_P(t) = 1 + \sum_{m \geq 1} \# (mP \cap \mathbb{Z}^d) \ t^m = \frac{h_d t^d + h_{d-1} t^{d-1} + \cdots + h_0}{(1 - t)^{d+1}}
\]

▶ (Ehrhart) \(h_0 = 1 \), \(h_1 = \# (P \cap \mathbb{Z}^d) - d - 1 \), \(h_d = \# (P^\circ \cap \mathbb{Z}^d) \)
General Properties of Ehrhart h-Vectors

\[
\text{Ehr}_P(t) = 1 + \sum_{m \geq 1} \# (mP \cap \mathbb{Z}^d) t^m = \frac{h_d t^d + h_{d-1} t^{d-1} + \cdots + h_0}{(1 - t)^{d+1}}
\]

- (Ehrhart) $h_0 = 1$, $h_1 = \# (P \cap \mathbb{Z}^d) - d - 1$, $h_d = \# (P^\circ \cap \mathbb{Z}^d)$

- (Ehrhart) $\text{vol } P = \frac{1}{d!} (h_d + h_{d-1} + \cdots + h_1 + 1)$
General Properties of Ehrhart h-Vectors

\[\text{Ehr}_P(t) = 1 + \sum_{m \geq 1} \# (mP \cap \mathbb{Z}^d) t^m = \frac{h_d t^d + h_{d-1} t^{d-1} + \cdots + h_0}{(1 - t)^{d+1}} \]

\begin{itemize}
 \item (Ehrhart) \(h_0 = 1 \), \(h_1 = \# (P \cap \mathbb{Z}^d) - d - 1 \), \(h_d = \# (P^\circ \cap \mathbb{Z}^d) \)
 \item (Ehrhart) \(\text{vol } P = \frac{1}{d!} (h_d + h_{d-1} + \cdots + h_1 + 1) \)
 \item (Stanley 1980) \(h_j \in \mathbb{Z}_{\geq 0} \)
\end{itemize}
General Properties of Ehrhart h-Vectors

\[\text{Ehr}_\mathcal{P}(t) = 1 + \sum_{m \geq 1} \# (m\mathcal{P} \cap \mathbb{Z}^d) \ t^m = \frac{h_d t^d + h_{d-1} t^{d-1} + \cdots + h_0}{(1 - t)^{d+1}} \]

- (Ehrhart) $h_0 = 1$, $h_1 = \# (\mathcal{P} \cap \mathbb{Z}^d) - d - 1$, $h_d = \# (\mathcal{P}^\circ \cap \mathbb{Z}^d)$

- (Ehrhart) $\text{vol} \ \mathcal{P} = \frac{1}{d!} (h_d + h_{d-1} + \cdots + h_1 + 1)$

- (Stanley 1980) $h_j \in \mathbb{Z}_{\geq 0}$

- (Stanley 1991) Whenever $h_s > 0$ but $h_{s+1} = \cdots = h_d = 0$, then $h_0 + h_1 + \cdots + h_j \leq h_s + h_{s-1} + \cdots + h_{s-j}$ for all $0 \leq j \leq s$.
General Properties of Ehrhart h-Vectors

$$\text{Ehr}_P(t) = 1 + \sum_{m \geq 1} \# (mP \cap \mathbb{Z}^d) t^m = \frac{h_d t^d + h_{d-1} t^{d-1} + \cdots + h_0}{(1 - t)^{d+1}}$$

- (Ehrhart) $h_0 = 1$, $h_1 = \# (P \cap \mathbb{Z}^d) - d - 1$, $h_d = \# (P^\circ \cap \mathbb{Z}^d)$

- (Ehrhart) $\text{vol} \ P = \frac{1}{d!} (h_d + h_{d-1} + \cdots + h_1 + 1)$

- (Stanley 1980) $h_j \in \mathbb{Z}_{\geq 0}$

- (Stanley 1991) Whenever $h_s > 0$ but $h_{s+1} = \cdots = h_d = 0$, then $h_0 + h_1 + \cdots + h_j \leq h_s + h_{s-1} + \cdots + h_{s-j}$ for all $0 \leq j \leq s$.

- (Hibi 1994) $h_0 + \cdots + h_{j+1} \geq h_d + \cdots + h_{d-j}$ for $0 \leq j \leq \left\lfloor \frac{d}{2} \right\rfloor - 1$.
General Properties of Ehrhart h-Vectors

$$\text{Ehr}_P(t) = 1 + \sum_{m \geq 1} \# (mP \cap \mathbb{Z}^d) t^m = \frac{h_d t^d + h_{d-1} t^{d-1} + \cdots + h_0}{(1-t)^{d+1}}$$

- (Ehrhart) $h_0 = 1$, $h_1 = \# (P \cap \mathbb{Z}^d) - d - 1$, $h_d = \# (P^\circ \cap \mathbb{Z}^d)$

- (Ehrhart) $\text{vol } P = \frac{1}{d!} (h_d + h_{d-1} + \cdots + h_1 + 1)$

- (Stanley 1980) $h_j \in \mathbb{Z}_{\geq 0}$

- (Stanley 1991) Whenever $h_s > 0$ but $h_{s+1} = \cdots = h_d = 0$, then $h_0 + h_1 + \cdots + h_j \leq h_s + h_{s-1} + \cdots + h_{s-j}$ for all $0 \leq j \leq s$.

- (Hibi 1994) $h_0 + \cdots + h_{j+1} \geq h_d + \cdots + h_{d-j}$ for $0 \leq j \leq \left\lfloor \frac{d}{2} \right\rfloor - 1$.

- (Hibi 1994) If $h_d > 0$ then $h_1 \leq h_j$ for $2 \leq j < d$.

Asymptotics of Ehrhart Series of Lattice Polytopes

Matthias Beck 6
General Properties of Ehrhart h-Vectors

\[\text{Ehr}_P(t) = 1 + \sum_{m \geq 1} \# (mP \cap \mathbb{Z}^d) t^m = \frac{h_d t^d + h_{d-1} t^{d-1} + \cdots + h_0}{(1 - t)^{d+1}} \]

▶ (Stapledon 2009) Many more inequalities for the h_j's arising from Kneser's Theorem (arXiv:0904.3035)
A triangulation τ of P is unimodular if for any simplex of τ with vertices v_0, v_1, \ldots, v_d, the vectors $v_1 - v_0, \ldots, v_d - v_0$ form a basis of \mathbb{Z}^d.
A triangulation τ of P is unimodular if for any simplex of τ with vertices v_0, v_1, \ldots, v_d, the vectors $v_1 - v_0, \ldots, v_d - v_0$ form a basis of \mathbb{Z}^d.

The h-polynomial (h-vector) of a triangulation τ encodes the faces numbers of the simplices in τ of different dimensions.
A triangulation τ of P is unimodular if for any simplex of τ with vertices v_0, v_1, \ldots, v_d, the vectors $v_1 - v_0, \ldots, v_d - v_0$ form a basis of \mathbb{Z}^d.

The h-polynomial (h-vector) of a triangulation τ encodes the faces numbers of the simplices in τ of different dimensions.

(Stanley 1980) If P admits a unimodular triangulation then $h(t) = (1 - t)^{d+1} \text{Ehr}_P(t)$ is the h-polynomial of the triangulation.
General Properties of Ehrhart h-Vectors

A triangulation τ of P is unimodular if for any simplex of τ with vertices v_0, v_1, \ldots, v_d, the vectors $v_1 - v_0, \ldots, v_d - v_0$ form a basis of \mathbb{Z}^d.

The h-polynomial (h-vector) of a triangulation τ encodes the faces numbers of the simplices in τ of different dimensions.

- (Stanley 1980) If P admits a unimodular triangulation then $h(t) = (1 - t)^{d+1} \text{Ehr}_P(t)$ is the h-polynomial of the triangulation.

- Recent papers of Reiner–Welker and Athanasiadis use this as a starting point to give conditions under which the Ehrhart h-vector is unimodal, i.e., $h_d \leq h_{d-1} \leq \cdots \leq h_k \geq h_{k-1} \geq \cdots \geq h_0$ for some k.

Define \(h_0(n), h_1(n), \ldots, h_d(n) \) through

\[
Ehr_{n\mathcal{P}}(t) = \frac{h_d(n) t^d + h_{d-1}(n) t^{d-1} + \cdots + h_0(n)}{(1 - t)^{d+1}}.
\]

What does the Ehrhart h-vector \((h_0(n), h_1(n), \ldots, h_d(n))\) look like as \(n \) increases?
The Main Question

Define \(h_0(n), h_1(n), \ldots, h_d(n) \) through

\[
\text{Ehr}_{n \mathcal{P}}(t) = \frac{h_d(n) t^d + h_{d-1}(n) t^{d-1} + \cdots + h_0(n)}{(1 - t)^{d+1}}.
\]

What does the Ehrhart h-vector \((h_0(n), h_1(n), \ldots, h_d(n))\) look like as \(n \) increases?

Let \(h(t) = (1 - t)^{d+1} \text{Ehr}_{\mathcal{P}}(t) \). The operator \(U_n \) defined through

\[
\text{Ehr}_{n \mathcal{P}}(t) = 1 + \sum_{m \geq 1} \mathcal{L}_{\mathcal{P}}(nm) t^m = \frac{U_n h(t)}{(1 - t)^{d+1}}
\]

appears in Number Theory as a Hecke operator and in Commutative Algebra in Veronese subring constructions.
Motivation I: Unimodular Triangulations

Theorem (Kempf–Knudsen–Mumford–Saint-Donat–Waterman 1970's)
For every lattice polytope P there exists an integer m such that mP admits a regular unimodular triangulation.
Motivation I: Unimodular Triangulations

Theorem (Kempf–Knudsen–Mumford–Saint-Donat–Waterman 1970's)
For every lattice polytope \mathcal{P} there exists an integer m such that $m\mathcal{P}$ admits a regular unimodular triangulation.

Conjectures

(a) For every lattice polytope \mathcal{P} there exists an integer m such that $k\mathcal{P}$ admits a regular unimodular triangulation for $k \geq m$.
Motivation I: Unimodular Triangulations

Theorem (Kempf–Knudsen–Mumford–Saint-Donat–Waterman 1970's)
For every lattice polytope \mathcal{P} there exists an integer m such that $m\mathcal{P}$ admits a regular unimodular triangulation.

Conjectures

(a) For every lattice polytope \mathcal{P} there exists an integer m such that $k\mathcal{P}$ admits a regular unimodular triangulation for $k \geq m$.

(b) For every d there exists an integer m_d such that, if \mathcal{P} is a d-dimensional lattice polytope, then $m_d\mathcal{P}$ admits a regular unimodular triangulation.
Motivation I: Unimodular Triangulations

For every lattice polytope \mathcal{P} there exists an integer m such that $m\mathcal{P}$ admits a regular unimodular triangulation.

Conjectures

(a) For every lattice polytope \mathcal{P} there exists an integer m such that $k\mathcal{P}$ admits a regular unimodular triangulation for $k \geq m$.

(b) For every d there exists an integer m_d such that, if \mathcal{P} is a d-dimensional lattice polytope, then $m_d\mathcal{P}$ admits a regular unimodular triangulation.

(c) For every d there exists an integer m_d such that, if \mathcal{P} is a d-dimensional lattice polytope, then $k\mathcal{P}$ admits a regular unimodular triangulation for $k \geq m_d$.
Motivation II: Unimodal Ehrhart h-Vectors

Theorem (Athanasiadis–Hibi–Stanley 2004) If the d-dimensional lattice polytope \mathcal{P} admits a regular unimodular triangulation, then the Ehrhart h-vector of \mathcal{P} satisfies

\begin{align*}
(a) \quad & h_{j+1} \geq h_{d-j} \text{ for } 0 \leq j \leq \lfloor \frac{d}{2} \rfloor - 1 , \\
(b) \quad & h_{\lfloor \frac{d+1}{2} \rfloor} \geq h_{\lfloor \frac{d+1}{2} \rfloor + 1} \geq \cdots \geq h_{d-1} \geq h_d , \\
(c) \quad & h_j \leq \binom{h_1 + j - 1}{j} \text{ for } 0 \leq j \leq d .
\end{align*}
Motivation II: Unimodal Ehrhart h-Vectors

Theorem (Athanasiadis–Hibi–Stanley 2004) If the d-dimensional lattice polytope \mathcal{P} admits a regular unimodular triangulation, then the Ehrhart h-vector of \mathcal{P} satisfies

(a) $h_{j+1} \geq h_{d-j}$ for $0 \leq j \leq \left\lfloor \frac{d}{2} \right\rfloor - 1$,

(b) $h_{\left\lfloor \frac{d+1}{2} \right\rfloor} \geq h_{\left\lfloor \frac{d+1}{2} \right\rfloor + 1} \geq \cdots \geq h_{d-1} \geq h_d$,

(c) $h_j \leq \binom{h_1 + j - 1}{j}$ for $0 \leq j \leq d$.

In particular, if the Ehrhart h-vector of \mathcal{P} is symmetric and \mathcal{P} admits a regular unimodular triangulation, then the Ehrhart h-vector is unimodal.
Motivation II: Unimodal Ehrhart h-Vectors

Theorem (Athanasiadis–Hibi–Stanley 2004) If the \(d\)-dimensional lattice polytope \(\mathcal{P}\) admits a regular unimodular triangulation, then the Ehrhart h-vector of \(\mathcal{P}\) satisfies

\[
\begin{align*}
(a) \quad h_{j+1} & \geq h_{d-j} \quad \text{for} \quad 0 \leq j \leq \lfloor \frac{d}{2} \rfloor - 1, \\
(b) \quad h_{\lfloor \frac{d+1}{2} \rfloor} & \geq h_{\lfloor \frac{d+1}{2} \rfloor + 1} \geq \cdots \geq h_{d-1} \geq h_d, \\
(c) \quad h_j & \leq \binom{h_1 + j - 1}{j} \quad \text{for} \quad 0 \leq j \leq d.
\end{align*}
\]

In particular, if the Ehrhart h-vector of \(\mathcal{P}\) is symmetric and \(\mathcal{P}\) admits a regular unimodular triangulation, then the Ehrhart h-vector is unimodal.

There are (many) lattice polytopes for which (some of these) inequalities fail and one may hope to use this theorem to construct a counter-example to the Knudsen–Mumford–Waterman Conjectures.
Theorem (Brenti–Welker 2008) For any $d \in \mathbb{Z}_{>0}$, there exists real numbers $\alpha_1 < \alpha_2 < \cdots < \alpha_{d-1} < \alpha_d = 0$, such that, if $h(t)$ is a polynomial of degree at most d with nonnegative integer coefficients and constant term 1, then for n sufficiently large, $U_n h(t)$ has negative real roots $\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$ and $\lim_{n \to \infty} \beta_j(n) = \alpha_j$.
Veronese Polynomials Are Eventually Unimodal

Theorem (Brenti–Welker 2008) For any \(d \in \mathbb{Z}_{>0} \), there exists real numbers \(\alpha_1 < \alpha_2 < \cdots < \alpha_{d-1} < \alpha_d = 0 \), such that, if \(h(t) \) is a polynomial of degree at most \(d \) with nonnegative integer coefficients and constant term 1, then for \(n \) sufficiently large, \(U_n h(t) \) has negative real roots \(\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0 \) and \(\lim_{n \to \infty} \beta_j(n) = \alpha_j \).

Here “sufficiently large” depends on \(h(t) \).
Veronese Polynomials Are Eventually Unimodal

Theorem (Brenti–Welker 2008) For any $d \in \mathbb{Z}_{>0}$, there exists real numbers $\alpha_1 < \alpha_2 < \cdots < \alpha_{d-1} < \alpha_d = 0$, such that, if $h(t)$ is a polynomial of degree at most d with nonnegative integer coefficients and constant term 1, then for n sufficiently large, $U_n h(t)$ has negative real roots $\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$ and $\lim_{n \to \infty} \beta_j(n) = \alpha_j$.

Here “sufficiently large” depends on $h(t)$.

If the polynomial $p(t) = a_dt^d + a_{d-1}t^{d-1} + \cdots + a_0$ has negative roots, then its coefficients are (strictly) log concave ($a_j^2 > a_{j-1}a_{j+1}$).
Veronese Polynomials Are Eventually Unimodal

Theorem (Brenti–Welker 2008) For any $d \in \mathbb{Z}_{>0}$, there exists real numbers

$$\alpha_1 < \alpha_2 < \cdots < \alpha_{d-1} < \alpha_d = 0,$$

such that, if $h(t)$ is a polynomial of degree at most d with nonnegative integer coefficients and constant term 1, then for n sufficiently large, $U_n h(t)$ has negative real roots

$$\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$$

and

$$\lim_{n \to \infty} \beta_j(n) = \alpha_j.$$

Here “sufficiently large” depends on $h(t)$.

If the polynomial $p(t) = a_dt^d + a_{d-1}t^{d-1} + \cdots + a_0$ has negative roots, then its coefficients are (strictly) log concave ($a_j^2 > a_{j-1}a_{j+1}$) which, in turn, implies that the coefficients are (strictly) unimodal ($a_d < a_{d-1} < \cdots < a_k > a_{k-1} > \cdots > a_0$ for some k).
A General Theorem

The Eulerian polynomial $A_d(t)$ is defined through

$$\sum_{m \geq 0} m^d t^m = \frac{A_d(t)}{(1 - t)^{d+1}}.$$

Theorem (MB–Stapledon) Fix a positive integer d and let $\rho_1 < \rho_2 < \cdots < \rho_d = 0$ denote the roots of $A_d(t)$. There exist M, N depending only on d such that, if $h(t)$ is a polynomial of degree at most d with nonnegative integer coefficients and constant term 1, then for $n \geq N$, $U_n h(t)$ has negative real roots $\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$ with

$$\lim_{n \to \infty} \beta_j(n) = \rho_j,$$

and the coefficients of $U_n h(t)$ satisfy $h_j(n) < M h_d(n)$.

Asymptotics of Ehrhart Series of Lattice Polytopes

Matthias Beck
A General Theorem

The Eulerian polynomial $A_d(t)$ is defined through

$$
\sum_{m \geq 0} m^d t^m = \frac{A_d(t)}{(1 - t)^{d+1}}.
$$

Theorem (MB–Stapledon) Fix a positive integer d and let $\rho_1 < \rho_2 < \cdots < \rho_d = 0$ denote the roots of $A_d(t)$. There exist M, N depending only on d such that, if $h(t)$ is a polynomial of degree at most d with nonnegative integer coefficients and constant term 1, then for $n \geq N$, $U_n h(t)$ has negative real roots $\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$ with

$$
\lim_{n \to \infty} \beta_j(n) = \rho_j,
$$

and the coefficients of $U_n h(t)$ satisfy $h_j(n) < M h_d(n)$.

In particular, the coefficients of $U_n h(t)$ are unimodal for $n \geq N$.
A General Theorem

The Eulerian polynomial $A_d(t)$ is defined through

$$\sum_{m \geq 0} m^d t^m = \frac{A_d(t)}{(1 - t)^{d+1}}.$$

Theorem (MB–Stapledon) Fix a positive integer d and let $\rho_1 < \rho_2 < \cdots < \rho_d = 0$ denote the roots of $A_d(t)$. There exist M, N depending only on d such that, if $h(t)$ is a polynomial of degree at most d with nonnegative integer coefficients and constant term 1, then for $n \geq N$, $U_n h(t)$ has negative real roots $\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$ with

$$\lim_{n \to \infty} \beta_j(n) = \rho_j,$$

and the coefficients of $U_n h(t)$ satisfy $h_j(n) < M h_d(n)$.

In particular, the coefficients of $U_n h(t)$ are unimodal for $n \geq N$.

Furthermore, if $h_0 + \cdots + h_{j+1} \geq h_d + \cdots + h_{d-j}$ for $0 \leq j \leq \lfloor \frac{d}{2} \rfloor - 1$, with at least one strict inequality, then we may choose N such that, for $n \geq N$,

$$h_0 = h_0(n) < h_d(n) < h_1(n) < \cdots < h_j(n) < h_{d-j}(n) < h_{j+1}(n) < \cdots < h_{\lfloor \frac{d+1}{2} \rfloor}(n) < M h_d(n).$$
An Ehrhartian Corollary

Corollary (MB–Stapledon) Fix a positive integer d and let $\rho_1 < \rho_2 < \cdots < \rho_d = 0$ denote the roots of the Eulerian polynomial $A_d(t)$. There exist M, N depending only on d such that, if P is a d-dimensional lattice polytope with Ehrhart series numerator $h(t)$, then for $n \geq N$, $U_n h(t)$ has negative real roots $\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$ with $\lim_{n \to \infty} \beta_j(n) = \rho_j$.
An Ehrhartian Corollary

Corollary (MB–Stapledon) Fix a positive integer d and let $\rho_1 < \rho_2 < \cdots < \rho_d = 0$ denote the roots of the Eulerian polynomial $A_d(t)$. There exist M, N depending only on d such that, if P is a d-dimensional lattice polytope with Ehrhart series numerator $h(t)$, then for $n \geq N$, $U_n h(t)$ has negative real roots $\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$ with $\lim_{n \to \infty} \beta_j(n) = \rho_j$.

In particular, the coefficients of $U_n h(t)$ are unimodal for $n \geq N$.
Corollary (MB–Stapledon) Fix a positive integer d and let $\rho_1 < \rho_2 < \cdots < \rho_d = 0$ denote the roots of the Eulerian polynomial $A_d(t)$. There exist M, N depending only on d such that, if P is a d-dimensional lattice polytope with Ehrhart series numerator $h(t)$, then for $n \geq N$, $U_n h(t)$ has negative real roots $\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$ with $\lim_{n \to \infty} \beta_j(n) = \rho_j$.

In particular, the coefficients of $U_n h(t)$ are unimodal for $n \geq N$.

Furthermore, they satisfy

$$1 = h_0(n) < h_d(n) < h_1(n) < \cdots < h_j(n) < h_{d-j}(n) < h_{j+1}(n)$$
$$< \cdots < h_{\left\lfloor \frac{d+1}{2} \right\rfloor}(n) < M h_d(n).$$
Ingredients I

Stapledon's Decomposition A polynomial $h(t) = h_{d+1} t^{d+1} + h_d t^d + \cdots + h_0$ of degree at most $d+1$ has a unique decomposition $h(t) = a(t) + b(t)$ where $a(t)$ and $b(t)$ are polynomials satisfying $a(t) = t^d a\left(\frac{1}{t}\right)$ and $b(t) = t^{d+1} b\left(\frac{1}{t}\right)$.
Stapledon’s Decomposition A polynomial $h(t) = h_{d+1}t^{d+1} + h_dt^d + \cdots + h_0$ of degree at most $d + 1$ has a unique decomposition $h(t) = a(t) + b(t)$ where $a(t)$ and $b(t)$ are polynomials satisfying $a(t) = t^d a\left(\frac{1}{t}\right)$ and $b(t) = t^{d+1} b\left(\frac{1}{t}\right)$.

The coefficients of $a(t)$ are positive if and only if $h_0 + \cdots + h_j \geq h_{d+1} + \cdots + h_{d+1-j}$ for $0 \leq j < \left\lfloor \frac{d}{2} \right\rfloor$.
Stapledon’s Decomposition A polynomial \(h(t) = h_{d+1}t^{d+1} + h_d t^d + \cdots + h_0 \) of degree at most \(d+1 \) has a unique decomposition \(h(t) = a(t) + b(t) \) where \(a(t) \) and \(b(t) \) are polynomials satisfying \(a(t) = t^d a\left(\frac{1}{t}\right) \) and \(b(t) = t^{d+1} b\left(\frac{1}{t}\right) \).

- The coefficients of \(a(t) \) are positive if and only if \(h_0 + \cdots + h_j \geq h_{d+1} + \cdots + h_{d+1-j} \) for \(0 \leq j < \left\lfloor \frac{d}{2} \right\rfloor \).

- The coefficients of \(a(t) \) are strictly unimodal if and only if \(h_{j+1} > h_{d-j} \) for \(0 \leq j \leq \left\lfloor \frac{d}{2} \right\rfloor - 1 \).
Ingredients I

Stapledon's Decomposition A polynomial $h(t) = h_{d+1} t^{d+1} + h_d t^d + \cdots + h_0$ of degree at most $d+1$ has a unique decomposition $h(t) = a(t) + b(t)$ where $a(t)$ and $b(t)$ are polynomials satisfying $a(t) = t^d a\left(\frac{1}{t}\right)$ and $b(t) = t^{d+1} b\left(\frac{1}{t}\right)$.

- The coefficients of $a(t)$ are positive if and only if $h_0 + \cdots + h_j \geq h_{d+1} + \cdots + h_{d+1-j}$ for $0 \leq j < \left\lfloor \frac{d}{2} \right\rfloor$.

- The coefficients of $a(t)$ are strictly unimodal if and only if $h_{j+1} > h_{d-j}$ for $0 \leq j \leq \left\lfloor \frac{d}{2} \right\rfloor - 1$.

Theorem (Stapledon 2008) If $h(t)$ is the Ehrhart h-vector of a lattice d-polytope, then the coefficients of $a(t)$ satisfy $1 = a_0 \leq a_1 \leq a_j$ for $2 \leq j \leq d - 1$.

Asymptotics of Ehrhart Series of Lattice Polytopes Matthias Beck
Stapledon’s Decomposition A polynomial $h(t) = h_{d+1}t^{d+1} + h_dt^d + \cdots + h_0$ of degree at most $d+1$ has a unique decomposition $h(t) = a(t) + b(t)$ where $a(t)$ and $b(t)$ are polynomials satisfying $a(t) = t^d a(\frac{1}{t})$ and $b(t) = t^{d+1} b(\frac{1}{t})$.

- The coefficients of $a(t)$ are positive if and only if $h_0 + \cdots + h_j \geq h_{d+1} + \cdots + h_{d+1-j}$ for $0 \leq j < \left\lfloor \frac{d}{2} \right\rfloor$.

- The coefficients of $a(t)$ are strictly unimodal if and only if $h_{j+1} > h_{d-j}$ for $0 \leq j \leq \left\lfloor \frac{d}{2} \right\rfloor - 1$.

Theorem (Stapeldon 2008) If $h(t)$ is the Ehrhart h-vector of a lattice d-polytope, then the coefficients of $a(t)$ satisfy $1 = a_0 \leq a_1 \leq a_j$ for $2 \leq j \leq d-1$.

Corollary Hibi’s inequalities $h_0 + \cdots + h_{j+1} \geq h_d + \cdots + h_{d-j}$ for the Ehrhart h-vector are strict.
Let \(h(t) = h_{d+1}t^{d+1} + h_dt^d + \cdots + h_0 \) be a polynomial of degree at most \(d + 1 \) and expand \(\frac{h(t)}{(1-t)^{d+1}} = h_0 + \sum_{m \geq 1} g(m) t^m \), for some polynomial \(g(m) = g_d m^d + g_{d-1} m^{d-1} + \cdots + g_0 \).
Ingredients II

Let \(h(t) = h_{d+1}t^{d+1} + h_dt^d + \cdots + h_0 \) be a polynomial of degree at most \(d + 1 \) and expand \(\frac{h(t)}{(1-t)^{d+1}} = h_0 + \sum_{m \geq 1} g(m) t^m \), for some polynomial \(g(m) = g_dm^d + g_{d-1}m^{d-1} + \cdots + g_0 \).

Theorem (Betke–McMullen 1985) If \(h_j \geq 0 \) for \(0 \leq j \leq d + 1 \), then for any \(1 \leq r \leq d - 1 \),

\[
g_r \leq (-1)^{d-r} S_r(d) g_d + \frac{(-1)^{d-r-1} h_0 S_{r+1}(d)}{(d-1)!},
\]

where \(S_i(d) \) is the Stirling number of the first kind.
Ingredients II

Let $h(t) = h_{d+1}t^{d+1} + h_d t^d + \cdots + h_0$ be a polynomial of degree at most $d + 1$ and expand $\frac{h(t)}{(1-t)^{d+1}} = h_0 + \sum_{m\geq 1} g(m) t^m$, for some polynomial $g(m) = g_d m^d + g_{d-1} m^{d-1} + \cdots + g_0$.

Theorem (Betke–McMullen 1985) If $h_j \geq 0$ for $0 \leq j \leq d + 1$, then for any $1 \leq r \leq d - 1$,

$$g_r \leq (-1)^{d-r} S_r(d) g_d + \frac{(-1)^{d-r-1} h_0 S_{r+1}(d)}{(d-1)!},$$

where $S_i(d)$ is the Stirling number of the first kind.

Theorem (MB–Stapledon) If $h_0 + \cdots + h_j \geq h_{d+1} + \cdots + h_{d+1-j}$ for $0 \leq j \leq \left\lfloor \frac{d}{2} \right\rfloor$, with at least one strict inequality, then

$$g_{d-1-2r} \leq S_{d-1-2r}(d-1) g_{d-1} - \frac{(h_0 - h_{d+1}) S_{d-2r}(d-1)}{2(d-2)!}.$$
Let $h(t) = h_d m^d + h_{d-1} m^{d-1} + \cdots + h_0$ be a polynomial of degree at most d and expand \(\frac{h(t)}{(1-t)^{d+1}} = \sum_{m \geq 0} g(m) t^m \), for some polynomial $g(m) = g_d m^d + g_{d-1} m^{d-1} + \cdots + g_0$.
Ingredients III

Let \(h(t) = h_d t^d + h_{d-1} t^{d-1} + \cdots + h_0 \) be a polynomial of degree at most \(d \) and expand \(\frac{h(t)}{(1-t)^{d+1}} = \sum_{m \geq 0} g(m) t^m \), for some polynomial \(g(m) = g_d m^d + g_{d-1} m^{d-1} + \cdots + g_0 \).

Recall our notation \(U_n h(t) = h_d(n) t^d + h_{d-1}(n) t^{d-1} + \cdots + h_0(n) \).

Lemma \(U_n h(t) = \sum_{j=0}^{d} g_j A_j(t) (1 - t)^{d-j} n^j \).
Let \(h(t) = h_d t^d + h_{d-1} t^{d-1} + \cdots + h_0 \) be a polynomial of degree at most \(d \) and expand\(\frac{h(t)}{(1-t)^{d+1}} = \sum_{m \geq 0} g(m) t^m \), for some polynomial \(g(m) = g_d m^d + g_{d-1} m^{d-1} + \cdots + g_0 \).

Recall our notation \(U_n h(t) = h_d(n) t^d + h_{d-1}(n) t^{d-1} + \cdots + h_0(n) \).

Lemma \[U_n h(t) = \sum_{j=0}^{d} g_j A_j(t) (1-t)^{d-j} n^j. \]

In particular, for \(1 \leq j \leq d \), \(h_j(n) \) is a polynomial in \(n \) of degree \(d \) and

\[h_j(n) = A(d, j) g_d n^d + (A(d-1, j) - A(d-1, j-1)) g_{d-1} n^{d-1} + O(n^{d-2}). \]
Ingredients IV

Lemma \(U_n h(t) = \sum_{j=0}^{d} g_j A_j(t) (1 - t)^{d-j} n^j. \)
Ingredients IV

Lemma \(U_n h(t) = \sum_{j=0}^{d} g_j A_j(t) (1 - t)^{d-j} n^j. \)

Exercise The nonzero roots of the Eulerian polynomial \(A_d(t) = \sum_{j=0}^{d} A(d, j) t^j \) are negative.
Ingredients IV

Lemma \(U_n h(t) = \sum_{j=0}^{d} g_j A_j(t) (1 - t)^{d-j} n^j. \)

Exercise The nonzero roots of the Eulerian polynomial \(A_d(t) = \sum_{j=0}^{d} A(d, j) t^j \) are negative.

Theorem (Cauchy) Let \(p(n) = p_d n^d + p_{d-1} n^{d-1} + \cdots + p_0 \) be a polynomial of degree \(d \) with real coefficients. The complex roots of \(p(n) \) lie in the open disc

\[
\left\{ z \in \mathbb{C} : |z| < 1 + \max_{0 \leq j \leq d} \left| \frac{p_j}{p_d} \right| \right\}.
\]
Veronese Subrings

Let $R = \oplus_{j \geq 0} R_j$ be a graded ring; we assume that $R_0 = K$ is a field and that R is finitely generated over K.
Veronese Subrings

Let $R = \oplus_{j \geq 0} R_j$ be a graded ring; we assume that $R_0 = K$ is a field and that R is finitely generated over K.

$$R^{(n)} := \bigoplus_{j \geq 0} R_{jn} \quad \text{(n-th Veronese subring of } R)$$
Veronese Subrings

Let $R = \bigoplus_{j \geq 0} R_j$ be a graded ring; we assume that $R_0 = K$ is a field and that R is finitely generated over K.

$$R^{(n)} := \bigoplus_{j \geq 0} R_{jn} \quad (n\text{th Veronese subring of } R)$$

$$H(R, m) := \dim_K R_m \quad (\text{Hilbert function of } R)$$
Veronese Subrings

Let $R = \bigoplus_{j \geq 0} R_j$ be a graded ring; we assume that $R_0 = K$ is a field and that R is finitely generated over K.

$$R^{(n)} := \bigoplus_{j \geq 0} R_{jn} \quad (n\text{th Veronese subring of } R)$$

$$H(R, m) := \dim_K R_m \quad (\text{Hilbert function of } R)$$

By a theorem of Hilbert $H(R, m)$ is a polynomial in m when m is sufficiently large. Note that

$$\frac{U_n h(t)}{(1 - t)^{d+1}} = \sum_{m \geq 0} H(R^{(n)}, m) t^m.$$
Veronese Subrings

Let $R = \oplus_{j \geq 0} R_j$ be a graded ring; we assume that $R_0 = K$ is a field and that R is finitely generated over K.

$$R^{(n)} := \bigoplus_{j \geq 0} R_{jn} \quad (n\text{th Veronese subring of } R)$$

$$H(R, m) := \dim_K R_m \quad (\text{Hilbert function of } R)$$

By a theorem of Hilbert $H(R, m)$ is a polynomial in m when m is sufficiently large. Note that

$$\frac{U_n h(t)}{(1 - t)^{d+1}} = \sum_{m \geq 0} H(R^{(n)}, m) t^m.$$

Example Denote the cone over $\mathcal{P} \times \{1\}$ by cone \mathcal{P}. Then the semigroup algebra $K[\text{cone } \mathcal{P} \cap \mathbb{Z}^{d+1}]$ (graded by the projection to the last coordinate) gives rise to the Hilbert function $H(K[\text{cone } \mathcal{P} \cap \mathbb{Z}^{d+1}], m) = L_{\mathcal{P}}(m)$.
Corollary (MB–Stapledon) Fix a positive integer d and let $\rho_1 < \rho_2 < \cdots < \rho_d = 0$ denote the roots of the Eulerian polynomial $A_d(t)$. There exist M, N depending only on d such that, if $R = \bigoplus_{j \geq 0} R_j$ is a finitely generated graded ring over a field $R_0 = K$ that is Cohen–Macauley and module finite over the K-subalgebra generated by R_1, and if the Hilbert function $H(R, m)$ is a polynomial in m, then for $n \geq N$, $U_n h(t)$ has negative real roots $\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$ with $\lim_{n \to \infty} \beta_j(n) = \rho_j$.

Corollary (MB–Stapledon) Fix a positive integer d and let $\rho_1 < \rho_2 < \cdots < \rho_d = 0$ denote the roots of the Eulerian polynomial $A_d(t)$. There exist M, N depending only on d such that, if $R = \bigoplus_{j \geq 0} R_j$ is a finitely generated graded ring over a field $R_0 = K$ that is Cohen–Macauley and module finite over the K-subalgebra generated by R_1, and if the Hilbert function $H(R, m)$ is a polynomial in m, then for $n \geq N$, $U_n h(t)$ has negative real roots $\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$ with $\lim_{n \to \infty} \beta_j(n) = \rho_j$.

In particular, the coefficients of $U_n h(t)$ are unimodal for $n \geq N$.
A Veronese Corollary

Corollary (MB–Stapledon) Fix a positive integer d and let $\rho_1 < \rho_2 < \cdots < \rho_d = 0$ denote the roots of the Eulerian polynomial $A_d(t)$. There exist M, N depending only on d such that, if $R = \bigoplus_{j \geq 0} R_j$ is a finitely generated graded ring over a field $R_0 = K$ that is Cohen–Macauley and module finite over the K-subalgebra generated by R_1, and if the Hilbert function $H(R, m)$ is a polynomial in m, then for $n \geq N$, $U_n h(t)$ has negative real roots $\beta_1(n) < \beta_2(n) < \cdots < \beta_{d-1}(n) < \beta_d(n) < 0$ with $\lim_{n \to \infty} \beta_j(n) = \rho_j$.

In particular, the coefficients of $U_n h(t)$ are unimodal for $n \geq N$.

Furthermore, they satisfy $h_j(n) < M h_d(n)$ for $0 \leq j \leq n$ and $n \geq N$.

Asymptotics of Ehrhart Series of Lattice Polytopes

Matthias Beck
Open Problems

Find optimal choices for M and N in any of our theorems.
Open Problems

Find optimal choices for M and N in any of our theorems.

Conjecture For Ehrhart series of d-dimensional polytopes, $N = d$.

(Open for $d \geq 3$)
Recall our inequalities $h_{j+1}(n) > h_{d-j}(n)$ in the main theorem.

Theorem (MB–Stapledon) Fix a positive integer d and set $N = d$ if d is even and $N = \frac{d+1}{2}$ if d is odd. If $h(t)$ is a polynomial of degree at most d satisfying $h_0 + \cdots + h_{j+1} > h_d + \cdots + h_{d-j}$ for $0 \leq j \leq \left\lfloor \frac{d}{2} \right\rfloor - 1$, then the coefficients of $U_n h(t)$ satisfy $h_{j+1}(n) > h_{d-j}(n)$ for $0 \leq j \leq \left\lfloor \frac{d}{2} \right\rfloor - 1$ and $n \geq N$.
One Result about Explicit Bounds

Recall our inequalities \(h_{j+1}(n) > h_{d-j}(n) \) in the main theorem.

Theorem (MB–Stapledon) Fix a positive integer \(d \) and set \(N = d \) if \(d \) is even and \(N = \frac{d+1}{2} \) if \(d \) is odd. If \(h(t) \) is a polynomial of degree at most \(d \), satisfying \(h_0 + \cdots + h_{j+1} > h_d + \cdots + h_{d-j} \) for \(0 \leq j \leq \left\lfloor \frac{d}{2} \right\rfloor - 1 \), then the coefficients of \(U_n h(t) \) satisfy \(h_{j+1}(n) > h_{d-j}(n) \) for \(0 \leq j \leq \left\lfloor \frac{d}{2} \right\rfloor - 1 \) and \(n \geq N \).

Corollary Fix a positive integer \(d \) and set \(N = d \) if \(d \) is even and \(N = \frac{d+1}{2} \) if \(d \) is odd. If \(P \) is a \(d \)-dimensional lattice polytope with Ehrhart h-vector \(h(t) \), then the coefficients of \(U_n h(t) \) satisfy \(h_{j+1}(n) > h_{d-j}(n) \) for \(0 \leq j \leq \left\lfloor \frac{d}{2} \right\rfloor - 1 \) and \(n \geq N \).
The Ehrhart series of nP becomes friendlier as n increases.
The Ehrhart series of nP becomes friendlier as n increases.

In fixed dimension, you don’t have to wait forever to make all Ehrhart series look friendly.
The Message

The Ehrhart series of nP becomes friendlier as n increases.

In fixed dimension, you don’t have to wait forever to make all Ehrhart series look friendly.

Homework Figure out what all of this has to do with carrying digits when summing 100-digit numbers.